Loading…
Electromagnetic characteristics of biosilica from rice husk
Rice husk, being a widely available natural plant renewable agricultural resource, can be transformed into effective reinforcing fillers of special concrete and gypsum building materials. The samples of silica from rice husks were synthesized by thermal oxidative pyrolysis and their electromagnetic...
Saved in:
Published in: | E3S web of conferences 2021-01, Vol.263, p.1013 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rice husk, being a widely available natural plant renewable agricultural resource, can be transformed into effective reinforcing fillers of special concrete and gypsum building materials. The samples of silica from rice husks were synthesized by thermal oxidative pyrolysis and their electromagnetic and microstructural characteristics were investigated. It was found that the rice husk itself is practically EM-wave transparent material in the frequency range of 0.1-7 GHz, while the products of its thermal oxidative pyrolysis have different microwave absorbing properties, depending on the amount of oxidizing agent used. The X-ray powder diffraction data showed the predominant presence of amorphous silica in the samples of rice husk ash with a small amount of α-quartz, α-cristobalite and α-tridymite. At a pyrolysis reaction temperature of rice husk of about 560 ± 20°C, the resulting product, in addition to amorphous silica and crystalline phases of silicon dioxide, contains traces of graphite particles, which leads to a sharp increase in dielectric characteristics and effective microwave absorption. When the temperature of the pyrolysis reaction of rice husk rises above 700°C the EM-wave absorption of such materials decreases. Thus, on the basis of the experiments carried out, the optimal ratios of rice husk and the used oxidizer of ammonium nitrate were revealed to obtain environmentally friendly ecological low-cost powder nanostructured biosilica additives for concrete and gypsum building compositions with increased effective radio absorption in the frequency range of the electromagnetic field above 1 GHz. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202126301013 |