Loading…

Electromagnetic characteristics of biosilica from rice husk

Rice husk, being a widely available natural plant renewable agricultural resource, can be transformed into effective reinforcing fillers of special concrete and gypsum building materials. The samples of silica from rice husks were synthesized by thermal oxidative pyrolysis and their electromagnetic...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2021-01, Vol.263, p.1013
Main Authors: Buz’ko, Vladimir, Shamray, Igor, Goryachko, Alexander, Udodov, Sergei, Abashin, Anatoly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rice husk, being a widely available natural plant renewable agricultural resource, can be transformed into effective reinforcing fillers of special concrete and gypsum building materials. The samples of silica from rice husks were synthesized by thermal oxidative pyrolysis and their electromagnetic and microstructural characteristics were investigated. It was found that the rice husk itself is practically EM-wave transparent material in the frequency range of 0.1-7 GHz, while the products of its thermal oxidative pyrolysis have different microwave absorbing properties, depending on the amount of oxidizing agent used. The X-ray powder diffraction data showed the predominant presence of amorphous silica in the samples of rice husk ash with a small amount of α-quartz, α-cristobalite and α-tridymite. At a pyrolysis reaction temperature of rice husk of about 560 ± 20°C, the resulting product, in addition to amorphous silica and crystalline phases of silicon dioxide, contains traces of graphite particles, which leads to a sharp increase in dielectric characteristics and effective microwave absorption. When the temperature of the pyrolysis reaction of rice husk rises above 700°C the EM-wave absorption of such materials decreases. Thus, on the basis of the experiments carried out, the optimal ratios of rice husk and the used oxidizer of ammonium nitrate were revealed to obtain environmentally friendly ecological low-cost powder nanostructured biosilica additives for concrete and gypsum building compositions with increased effective radio absorption in the frequency range of the electromagnetic field above 1 GHz.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202126301013