Loading…

Linear Computation Coding: A Framework for Joint Quantization and Computing

Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the comp...

Full description

Saved in:
Bibliographic Details
Published in:Algorithms 2022-07, Vol.15 (7), p.253
Main Authors: Müller, Ralf Reiner, Gäde, Bernhard Martin Wilhelm, Bereyhi, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3
container_end_page
container_issue 7
container_start_page 253
container_title Algorithms
container_volume 15
creator Müller, Ralf Reiner
Gäde, Bernhard Martin Wilhelm
Bereyhi, Ali
description Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.
doi_str_mv 10.3390/a15070253
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_974489960b9944dba2d8740fb26e013b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_974489960b9944dba2d8740fb26e013b</doaj_id><sourcerecordid>2693864215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgrR78BwuePFTztdk8b6VYrRZE0HPI5qOktpua3UX01xvdIp7e8JiZN28QOif4ijHA15qUuMK0ZAdoRABgwiWww3_4GJ207RpjUYIgI_S4DI3TqZjF7a7vdBdik7ENzeqmmBbzpLfuI6a3wsdUPMTQdMVzr5sufA1U3di9NCtO0ZHXm9ad7ecYvc5vX2b3k-XT3WI2XU4MI7KbEFcaZ6QtuRGOgOGs5JRYYNILb7wkHqqSUMBgvRQMfG1rLSlQXWNnnGVjtBh8bdRrtUthq9Onijqo30VMK6VTF8zGKah4fhoErgE4zz7UyopjX1PhMGF19roYvHYpvveu7dQ69qnJ8RUVOZLI0crMuhxYJsW2Tc7_XSVY_fSu_npn3217c7I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693864215</pqid></control><display><type>article</type><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><source>Publicly Available Content Database</source><creator>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</creator><creatorcontrib>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</creatorcontrib><description>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</description><identifier>ISSN: 1999-4893</identifier><identifier>EISSN: 1999-4893</identifier><identifier>DOI: 10.3390/a15070253</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; approximate computing ; Approximation ; Artificial neural networks ; Coding ; computational complexity ; Computing costs ; Cost control ; Data compression ; estimation error ; Field programmable gate arrays ; fixed-point arithmetic ; Integers ; Linear functions ; linear systems ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Neural networks ; Partial differential equations ; Random access memory ; Random variables ; rate-distortion theory ; Sparsity ; Wiring</subject><ispartof>Algorithms, 2022-07, Vol.15 (7), p.253</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</cites><orcidid>0000-0003-3780-9308 ; 0000-0001-9565-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693864215/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693864215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Müller, Ralf Reiner</creatorcontrib><creatorcontrib>Gäde, Bernhard Martin Wilhelm</creatorcontrib><creatorcontrib>Bereyhi, Ali</creatorcontrib><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><title>Algorithms</title><description>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>approximate computing</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Coding</subject><subject>computational complexity</subject><subject>Computing costs</subject><subject>Cost control</subject><subject>Data compression</subject><subject>estimation error</subject><subject>Field programmable gate arrays</subject><subject>fixed-point arithmetic</subject><subject>Integers</subject><subject>Linear functions</subject><subject>linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Random access memory</subject><subject>Random variables</subject><subject>rate-distortion theory</subject><subject>Sparsity</subject><subject>Wiring</subject><issn>1999-4893</issn><issn>1999-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgrR78BwuePFTztdk8b6VYrRZE0HPI5qOktpua3UX01xvdIp7e8JiZN28QOif4ijHA15qUuMK0ZAdoRABgwiWww3_4GJ207RpjUYIgI_S4DI3TqZjF7a7vdBdik7ENzeqmmBbzpLfuI6a3wsdUPMTQdMVzr5sufA1U3di9NCtO0ZHXm9ad7ecYvc5vX2b3k-XT3WI2XU4MI7KbEFcaZ6QtuRGOgOGs5JRYYNILb7wkHqqSUMBgvRQMfG1rLSlQXWNnnGVjtBh8bdRrtUthq9Onijqo30VMK6VTF8zGKah4fhoErgE4zz7UyopjX1PhMGF19roYvHYpvveu7dQ69qnJ8RUVOZLI0crMuhxYJsW2Tc7_XSVY_fSu_npn3217c7I</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Müller, Ralf Reiner</creator><creator>Gäde, Bernhard Martin Wilhelm</creator><creator>Bereyhi, Ali</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3780-9308</orcidid><orcidid>https://orcid.org/0000-0001-9565-6405</orcidid></search><sort><creationdate>20220701</creationdate><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><author>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>approximate computing</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Coding</topic><topic>computational complexity</topic><topic>Computing costs</topic><topic>Cost control</topic><topic>Data compression</topic><topic>estimation error</topic><topic>Field programmable gate arrays</topic><topic>fixed-point arithmetic</topic><topic>Integers</topic><topic>Linear functions</topic><topic>linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Random access memory</topic><topic>Random variables</topic><topic>rate-distortion theory</topic><topic>Sparsity</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Ralf Reiner</creatorcontrib><creatorcontrib>Gäde, Bernhard Martin Wilhelm</creatorcontrib><creatorcontrib>Bereyhi, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Ralf Reiner</au><au>Gäde, Bernhard Martin Wilhelm</au><au>Bereyhi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Computation Coding: A Framework for Joint Quantization and Computing</atitle><jtitle>Algorithms</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>253</spage><pages>253-</pages><issn>1999-4893</issn><eissn>1999-4893</eissn><abstract>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/a15070253</doi><orcidid>https://orcid.org/0000-0003-3780-9308</orcidid><orcidid>https://orcid.org/0000-0001-9565-6405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4893
ispartof Algorithms, 2022-07, Vol.15 (7), p.253
issn 1999-4893
1999-4893
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_974489960b9944dba2d8740fb26e013b
source Publicly Available Content Database
subjects Accuracy
Algorithms
approximate computing
Approximation
Artificial neural networks
Coding
computational complexity
Computing costs
Cost control
Data compression
estimation error
Field programmable gate arrays
fixed-point arithmetic
Integers
Linear functions
linear systems
Mathematical analysis
Matrices (mathematics)
Matrix algebra
Neural networks
Partial differential equations
Random access memory
Random variables
rate-distortion theory
Sparsity
Wiring
title Linear Computation Coding: A Framework for Joint Quantization and Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Computation%20Coding:%20A%20Framework%20for%20Joint%20Quantization%20and%20Computing&rft.jtitle=Algorithms&rft.au=M%C3%BCller,%20Ralf%20Reiner&rft.date=2022-07-01&rft.volume=15&rft.issue=7&rft.spage=253&rft.pages=253-&rft.issn=1999-4893&rft.eissn=1999-4893&rft_id=info:doi/10.3390/a15070253&rft_dat=%3Cproquest_doaj_%3E2693864215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693864215&rft_id=info:pmid/&rfr_iscdi=true