Loading…
Linear Computation Coding: A Framework for Joint Quantization and Computing
Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the comp...
Saved in:
Published in: | Algorithms 2022-07, Vol.15 (7), p.253 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3 |
container_end_page | |
container_issue | 7 |
container_start_page | 253 |
container_title | Algorithms |
container_volume | 15 |
creator | Müller, Ralf Reiner Gäde, Bernhard Martin Wilhelm Bereyhi, Ali |
description | Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed. |
doi_str_mv | 10.3390/a15070253 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_974489960b9944dba2d8740fb26e013b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_974489960b9944dba2d8740fb26e013b</doaj_id><sourcerecordid>2693864215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgrR78BwuePFTztdk8b6VYrRZE0HPI5qOktpua3UX01xvdIp7e8JiZN28QOif4ijHA15qUuMK0ZAdoRABgwiWww3_4GJ207RpjUYIgI_S4DI3TqZjF7a7vdBdik7ENzeqmmBbzpLfuI6a3wsdUPMTQdMVzr5sufA1U3di9NCtO0ZHXm9ad7ecYvc5vX2b3k-XT3WI2XU4MI7KbEFcaZ6QtuRGOgOGs5JRYYNILb7wkHqqSUMBgvRQMfG1rLSlQXWNnnGVjtBh8bdRrtUthq9Onijqo30VMK6VTF8zGKah4fhoErgE4zz7UyopjX1PhMGF19roYvHYpvveu7dQ69qnJ8RUVOZLI0crMuhxYJsW2Tc7_XSVY_fSu_npn3217c7I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693864215</pqid></control><display><type>article</type><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><source>Publicly Available Content Database</source><creator>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</creator><creatorcontrib>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</creatorcontrib><description>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</description><identifier>ISSN: 1999-4893</identifier><identifier>EISSN: 1999-4893</identifier><identifier>DOI: 10.3390/a15070253</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; approximate computing ; Approximation ; Artificial neural networks ; Coding ; computational complexity ; Computing costs ; Cost control ; Data compression ; estimation error ; Field programmable gate arrays ; fixed-point arithmetic ; Integers ; Linear functions ; linear systems ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Neural networks ; Partial differential equations ; Random access memory ; Random variables ; rate-distortion theory ; Sparsity ; Wiring</subject><ispartof>Algorithms, 2022-07, Vol.15 (7), p.253</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</cites><orcidid>0000-0003-3780-9308 ; 0000-0001-9565-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693864215/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693864215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Müller, Ralf Reiner</creatorcontrib><creatorcontrib>Gäde, Bernhard Martin Wilhelm</creatorcontrib><creatorcontrib>Bereyhi, Ali</creatorcontrib><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><title>Algorithms</title><description>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>approximate computing</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Coding</subject><subject>computational complexity</subject><subject>Computing costs</subject><subject>Cost control</subject><subject>Data compression</subject><subject>estimation error</subject><subject>Field programmable gate arrays</subject><subject>fixed-point arithmetic</subject><subject>Integers</subject><subject>Linear functions</subject><subject>linear systems</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Random access memory</subject><subject>Random variables</subject><subject>rate-distortion theory</subject><subject>Sparsity</subject><subject>Wiring</subject><issn>1999-4893</issn><issn>1999-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgrR78BwuePFTztdk8b6VYrRZE0HPI5qOktpua3UX01xvdIp7e8JiZN28QOif4ijHA15qUuMK0ZAdoRABgwiWww3_4GJ207RpjUYIgI_S4DI3TqZjF7a7vdBdik7ENzeqmmBbzpLfuI6a3wsdUPMTQdMVzr5sufA1U3di9NCtO0ZHXm9ad7ecYvc5vX2b3k-XT3WI2XU4MI7KbEFcaZ6QtuRGOgOGs5JRYYNILb7wkHqqSUMBgvRQMfG1rLSlQXWNnnGVjtBh8bdRrtUthq9Onijqo30VMK6VTF8zGKah4fhoErgE4zz7UyopjX1PhMGF19roYvHYpvveu7dQ69qnJ8RUVOZLI0crMuhxYJsW2Tc7_XSVY_fSu_npn3217c7I</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Müller, Ralf Reiner</creator><creator>Gäde, Bernhard Martin Wilhelm</creator><creator>Bereyhi, Ali</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3780-9308</orcidid><orcidid>https://orcid.org/0000-0001-9565-6405</orcidid></search><sort><creationdate>20220701</creationdate><title>Linear Computation Coding: A Framework for Joint Quantization and Computing</title><author>Müller, Ralf Reiner ; Gäde, Bernhard Martin Wilhelm ; Bereyhi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>approximate computing</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Coding</topic><topic>computational complexity</topic><topic>Computing costs</topic><topic>Cost control</topic><topic>Data compression</topic><topic>estimation error</topic><topic>Field programmable gate arrays</topic><topic>fixed-point arithmetic</topic><topic>Integers</topic><topic>Linear functions</topic><topic>linear systems</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Random access memory</topic><topic>Random variables</topic><topic>rate-distortion theory</topic><topic>Sparsity</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Ralf Reiner</creatorcontrib><creatorcontrib>Gäde, Bernhard Martin Wilhelm</creatorcontrib><creatorcontrib>Bereyhi, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Ralf Reiner</au><au>Gäde, Bernhard Martin Wilhelm</au><au>Bereyhi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Computation Coding: A Framework for Joint Quantization and Computing</atitle><jtitle>Algorithms</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>7</issue><spage>253</spage><pages>253-</pages><issn>1999-4893</issn><eissn>1999-4893</eissn><abstract>Here we introduce the new concept of computation coding. Similar to how rate-distortion theory is concerned with the lossy compression of data, computation coding deals with the lossy computation of functions. Particularizing to linear functions, we present an algorithmic approach to reduce the computational cost of multiplying a constant matrix with a variable vector, which requires neither a matrix nor vector having any particular structure or statistical properties. The algorithm decomposes the constant matrix into the product of codebook and wiring matrices whose entries are either zero or signed integer powers of two. For a typical application like the implementation of a deep neural network, the proposed algorithm reduces the number of required addition units several times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and only 1.5 adders per matrix entry are needed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/a15070253</doi><orcidid>https://orcid.org/0000-0003-3780-9308</orcidid><orcidid>https://orcid.org/0000-0001-9565-6405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4893 |
ispartof | Algorithms, 2022-07, Vol.15 (7), p.253 |
issn | 1999-4893 1999-4893 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_974489960b9944dba2d8740fb26e013b |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms approximate computing Approximation Artificial neural networks Coding computational complexity Computing costs Cost control Data compression estimation error Field programmable gate arrays fixed-point arithmetic Integers Linear functions linear systems Mathematical analysis Matrices (mathematics) Matrix algebra Neural networks Partial differential equations Random access memory Random variables rate-distortion theory Sparsity Wiring |
title | Linear Computation Coding: A Framework for Joint Quantization and Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Computation%20Coding:%20A%20Framework%20for%20Joint%20Quantization%20and%20Computing&rft.jtitle=Algorithms&rft.au=M%C3%BCller,%20Ralf%20Reiner&rft.date=2022-07-01&rft.volume=15&rft.issue=7&rft.spage=253&rft.pages=253-&rft.issn=1999-4893&rft.eissn=1999-4893&rft_id=info:doi/10.3390/a15070253&rft_dat=%3Cproquest_doaj_%3E2693864215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-1e5cec8d54c6e19c435421d938f6fcf81f97512909df8639fbdba8292ab0eced3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693864215&rft_id=info:pmid/&rfr_iscdi=true |