Loading…

Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses

Bi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NI...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-12, Vol.13 (1), p.22852-22852, Article 22852
Main Authors: Mehaboob, A., Fuertes, V., Rivera, V. A. G., Messaddeq, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c436t-7e2994c3056a9ea0c102564ab7a9142fafa32d14520270910793d51b0b2b26a93
container_end_page 22852
container_issue 1
container_start_page 22852
container_title Scientific reports
container_volume 13
creator Mehaboob, A.
Fuertes, V.
Rivera, V. A. G.
Messaddeq, Y.
description Bi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NIR luminescent emissions from Bi ions, such as understanding its origin and further improving the associated optical amplification capacity. In this work, Bi-doped germanosilicate glass compositions with ultrabroadband NIR luminescence were fabricated, in the range of 925–1630 nm, which covers O, E, S, C, and L-telecommunication bands. An in-depth analysis of the impact of modifying excitation wavelengths, Bi content, and GeO 2 /SiO 2 concentration ratio in the glass matrix demonstrates the possibility of considerably manipulating the Bi NIR luminescence, in terms of tuning emission parameters such as bandwidth, up to ~ 490 nm, and luminescence intensity. Based on theoretical and experimental luminescence data retrieved from the fabricated glasses, we demonstrate that the origin of broadband luminescence under all the considered excitation wavelengths can be ascribed to optical transitions of Bi 0 ions. Therefore, an energy level diagram for Bi 0 is proposed. We anticipate that our findings can provide clarifications to the existing uncertainty in the origin of Bi NIR emission, which will be useful to fabricate efficient future optical fiber amplifiers.
doi_str_mv 10.1038/s41598-023-49898-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_974776cc0bf844ebabb2acc957709007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_974776cc0bf844ebabb2acc957709007</doaj_id><sourcerecordid>2904480602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7e2994c3056a9ea0c102564ab7a9142fafa32d14520270910793d51b0b2b26a93</originalsourceid><addsrcrecordid>eNp9kb9u1TAUhyMEolXpCzCgSCwsgeN_cTxCBW2lSixlYLKOHefKV459sZOBjUfoM_Ik-DalIAa8-Mj-zmcf_ZrmJYG3BNjwrnAi1NABZR1XQ63Ik-aUAhcdZZQ-_as-ac5L2UNdgipO1PPmhA2Eqp6L0-brLfqQso-7dg1LRpMTjgbj2EaH-eePOx-njNmNbVhnH12xLlrX-th-8N2YDvVi5_KMMRUfvMXFtbuApbjyonk2YSju_GE_a758-nh7cdXdfL68vnh_01nO-qWTjirFLQPRo3IIlgAVPUcjURFOJ5yQ0ZFwQYFKUASkYqMgBgw1tLaws-Z6844J9_qQ_Yz5u07o9f1ByjuNefE2OK0kl7K3Fsw0cO4MGkPRWiVkNQPI6nqzuQ45fVtdWfTs68QhYHRpLZoqEIJI3tOKvv4H3ac1xzrpkeJ8gB6OFN0om1Mp2U2PHySgjznqLUddWX2foya16dWDejWzGx9bfqdWAbYB5XBMzuU_b_9H-wuq5qfb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904480602</pqid></control><display><type>article</type><title>Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mehaboob, A. ; Fuertes, V. ; Rivera, V. A. G. ; Messaddeq, Y.</creator><creatorcontrib>Mehaboob, A. ; Fuertes, V. ; Rivera, V. A. G. ; Messaddeq, Y.</creatorcontrib><description>Bi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NIR luminescent emissions from Bi ions, such as understanding its origin and further improving the associated optical amplification capacity. In this work, Bi-doped germanosilicate glass compositions with ultrabroadband NIR luminescence were fabricated, in the range of 925–1630 nm, which covers O, E, S, C, and L-telecommunication bands. An in-depth analysis of the impact of modifying excitation wavelengths, Bi content, and GeO 2 /SiO 2 concentration ratio in the glass matrix demonstrates the possibility of considerably manipulating the Bi NIR luminescence, in terms of tuning emission parameters such as bandwidth, up to ~ 490 nm, and luminescence intensity. Based on theoretical and experimental luminescence data retrieved from the fabricated glasses, we demonstrate that the origin of broadband luminescence under all the considered excitation wavelengths can be ascribed to optical transitions of Bi 0 ions. Therefore, an energy level diagram for Bi 0 is proposed. We anticipate that our findings can provide clarifications to the existing uncertainty in the origin of Bi NIR emission, which will be useful to fabricate efficient future optical fiber amplifiers.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-49898-1</identifier><identifier>PMID: 38129645</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019 ; 639/301/1023/218 ; 639/624 ; 639/624/1075/187 ; Emissions ; Humanities and Social Sciences ; Ions ; Luminescence ; multidisciplinary ; Oxidation ; Science ; Science (multidisciplinary) ; Silica ; Silicon dioxide ; Spectrum analysis ; Temperature ; Wave division multiplexing ; Wavelengths</subject><ispartof>Scientific reports, 2023-12, Vol.13 (1), p.22852-22852, Article 22852</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c436t-7e2994c3056a9ea0c102564ab7a9142fafa32d14520270910793d51b0b2b26a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904480602/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904480602?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38129645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehaboob, A.</creatorcontrib><creatorcontrib>Fuertes, V.</creatorcontrib><creatorcontrib>Rivera, V. A. G.</creatorcontrib><creatorcontrib>Messaddeq, Y.</creatorcontrib><title>Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Bi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NIR luminescent emissions from Bi ions, such as understanding its origin and further improving the associated optical amplification capacity. In this work, Bi-doped germanosilicate glass compositions with ultrabroadband NIR luminescence were fabricated, in the range of 925–1630 nm, which covers O, E, S, C, and L-telecommunication bands. An in-depth analysis of the impact of modifying excitation wavelengths, Bi content, and GeO 2 /SiO 2 concentration ratio in the glass matrix demonstrates the possibility of considerably manipulating the Bi NIR luminescence, in terms of tuning emission parameters such as bandwidth, up to ~ 490 nm, and luminescence intensity. Based on theoretical and experimental luminescence data retrieved from the fabricated glasses, we demonstrate that the origin of broadband luminescence under all the considered excitation wavelengths can be ascribed to optical transitions of Bi 0 ions. Therefore, an energy level diagram for Bi 0 is proposed. We anticipate that our findings can provide clarifications to the existing uncertainty in the origin of Bi NIR emission, which will be useful to fabricate efficient future optical fiber amplifiers.</description><subject>639/301/1019</subject><subject>639/301/1023/218</subject><subject>639/624</subject><subject>639/624/1075/187</subject><subject>Emissions</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Luminescence</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Wave division multiplexing</subject><subject>Wavelengths</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kb9u1TAUhyMEolXpCzCgSCwsgeN_cTxCBW2lSixlYLKOHefKV459sZOBjUfoM_Ik-DalIAa8-Mj-zmcf_ZrmJYG3BNjwrnAi1NABZR1XQ63Ik-aUAhcdZZQ-_as-ac5L2UNdgipO1PPmhA2Eqp6L0-brLfqQso-7dg1LRpMTjgbj2EaH-eePOx-njNmNbVhnH12xLlrX-th-8N2YDvVi5_KMMRUfvMXFtbuApbjyonk2YSju_GE_a758-nh7cdXdfL68vnh_01nO-qWTjirFLQPRo3IIlgAVPUcjURFOJ5yQ0ZFwQYFKUASkYqMgBgw1tLaws-Z6844J9_qQ_Yz5u07o9f1ByjuNefE2OK0kl7K3Fsw0cO4MGkPRWiVkNQPI6nqzuQ45fVtdWfTs68QhYHRpLZoqEIJI3tOKvv4H3ac1xzrpkeJ8gB6OFN0om1Mp2U2PHySgjznqLUddWX2foya16dWDejWzGx9bfqdWAbYB5XBMzuU_b_9H-wuq5qfb</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Mehaboob, A.</creator><creator>Fuertes, V.</creator><creator>Rivera, V. A. G.</creator><creator>Messaddeq, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231221</creationdate><title>Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses</title><author>Mehaboob, A. ; Fuertes, V. ; Rivera, V. A. G. ; Messaddeq, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7e2994c3056a9ea0c102564ab7a9142fafa32d14520270910793d51b0b2b26a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/1019</topic><topic>639/301/1023/218</topic><topic>639/624</topic><topic>639/624/1075/187</topic><topic>Emissions</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Luminescence</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Wave division multiplexing</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehaboob, A.</creatorcontrib><creatorcontrib>Fuertes, V.</creatorcontrib><creatorcontrib>Rivera, V. A. G.</creatorcontrib><creatorcontrib>Messaddeq, Y.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehaboob, A.</au><au>Fuertes, V.</au><au>Rivera, V. A. G.</au><au>Messaddeq, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>22852</spage><epage>22852</epage><pages>22852-22852</pages><artnum>22852</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Bi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NIR luminescent emissions from Bi ions, such as understanding its origin and further improving the associated optical amplification capacity. In this work, Bi-doped germanosilicate glass compositions with ultrabroadband NIR luminescence were fabricated, in the range of 925–1630 nm, which covers O, E, S, C, and L-telecommunication bands. An in-depth analysis of the impact of modifying excitation wavelengths, Bi content, and GeO 2 /SiO 2 concentration ratio in the glass matrix demonstrates the possibility of considerably manipulating the Bi NIR luminescence, in terms of tuning emission parameters such as bandwidth, up to ~ 490 nm, and luminescence intensity. Based on theoretical and experimental luminescence data retrieved from the fabricated glasses, we demonstrate that the origin of broadband luminescence under all the considered excitation wavelengths can be ascribed to optical transitions of Bi 0 ions. Therefore, an energy level diagram for Bi 0 is proposed. We anticipate that our findings can provide clarifications to the existing uncertainty in the origin of Bi NIR emission, which will be useful to fabricate efficient future optical fiber amplifiers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38129645</pmid><doi>10.1038/s41598-023-49898-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-12, Vol.13 (1), p.22852-22852, Article 22852
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_974776cc0bf844ebabb2acc957709007
source Publicly Available Content Database; PubMed; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1019
639/301/1023/218
639/624
639/624/1075/187
Emissions
Humanities and Social Sciences
Ions
Luminescence
multidisciplinary
Oxidation
Science
Science (multidisciplinary)
Silica
Silicon dioxide
Spectrum analysis
Temperature
Wave division multiplexing
Wavelengths
title Tailoring ultrabroadband near‐infrared luminescence in Bi-doped germanosilicate glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20ultrabroadband%20near%E2%80%90infrared%20luminescence%20in%20Bi-doped%20germanosilicate%20glasses&rft.jtitle=Scientific%20reports&rft.au=Mehaboob,%20A.&rft.date=2023-12-21&rft.volume=13&rft.issue=1&rft.spage=22852&rft.epage=22852&rft.pages=22852-22852&rft.artnum=22852&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-49898-1&rft_dat=%3Cproquest_doaj_%3E2904480602%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-7e2994c3056a9ea0c102564ab7a9142fafa32d14520270910793d51b0b2b26a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904480602&rft_id=info:pmid/38129645&rfr_iscdi=true