Loading…

A Small Change in Structure, a Big Change in Flexibility

Studies of the rotational barrier energy of the amide bond using quantum computing and nuclear magnetic resonance (NMR) are focused mainly on its use as a model of the peptide bond. The results of these studies are valuable not only in terms of the fundamental conformational properties of amide bond...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.28 (24), p.8004
Main Authors: Vassilev, Nikolay G, Ivanov, Ivo C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3
cites cdi_FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3
container_end_page
container_issue 24
container_start_page 8004
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Vassilev, Nikolay G
Ivanov, Ivo C
description Studies of the rotational barrier energy of the amide bond using quantum computing and nuclear magnetic resonance (NMR) are focused mainly on its use as a model of the peptide bond. The results of these studies are valuable not only in terms of the fundamental conformational properties of amide bonds, but also in the design of molecular machines, which have recently attracted interest. We investigate the fluxionality of the amide and enamide bonds of compound 3-[( )-(dimethylamino)methylidene]-1,1-dimethylurea using advanced dynamic NMR experiments and a theoretical evaluation of the density functional theory (DFT) calculation. The dynamic NMR study shows restricted rotation around the amide group (16.4 kcal/mol) and a very high barrier around the enamine group (18.6 kcal/mol). In a structurally similar compound, ( )-3-(dimethylamino)- , -dimethylacrylamide (N atom is replaced by CH), the amide barrier is 12.4 kcal/mol and the enamine barrier is 11.7 kcal/mol. The DFT studies of both compounds reveal the electronic origin of this phenomenon. Theoretical calculations reveal the origin of the higher enamine barrier. The better delocalization of the lone pair of electrons on the end nitrogen atom into the antibonding orbital of the neighboring C-N double bond leads to the better stabilization of the ground state, and this leads to a greater increase in the enamine barrier.
doi_str_mv 10.3390/molecules28248004
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_979f8b6db67b4404a05aac3fba31cfd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779214738</galeid><doaj_id>oai_doaj_org_article_979f8b6db67b4404a05aac3fba31cfd2</doaj_id><sourcerecordid>A779214738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3</originalsourceid><addsrcrecordid>eNplkUtv1DAUhS0Eou3AD2CDIrHpotNeP-LHchhRqFSJRcvaunacwSMnLk4i0X9flylVBfLC1vV3jn3vIeQDhXPODVwMOQW_pDAxzYQGEK_IMRUM1hyEef3ifEROpmkPwKig7VtyxDXlWhhxTPSmuRkwpWb7E8ddaOLY3Mxl8fNSwlmDzee4e3F1mcLv6GKK8_078qbHNIX3T_uK_Lj8crv9tr7-_vVqu7lee6HUvBYKoHMoGdPeA2VAjWFCOdf7znAw3jMHQnJtpJIUQ8uklOiVQ98Fx3q-IlcH3y7j3t6VOGC5txmj_VPIZWexzNGnYI0yvXayc1I5IUAgtIie9w459X3Hqtfpweuu5F9LmGY7xMmHlHAMeZksM9C2jDEwFf30D7rPSxlrp4-U0KIOkFfq_EDtsL4fxz7PBX1dXRiiz2PoY61vlDJ18qoqVoQeBL7kaSqhf-6Ign3M1P6XadV8fPrK4obQPSv-hsgfALi3m3M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904841383</pqid></control><display><type>article</type><title>A Small Change in Structure, a Big Change in Flexibility</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vassilev, Nikolay G ; Ivanov, Ivo C</creator><creatorcontrib>Vassilev, Nikolay G ; Ivanov, Ivo C</creatorcontrib><description>Studies of the rotational barrier energy of the amide bond using quantum computing and nuclear magnetic resonance (NMR) are focused mainly on its use as a model of the peptide bond. The results of these studies are valuable not only in terms of the fundamental conformational properties of amide bonds, but also in the design of molecular machines, which have recently attracted interest. We investigate the fluxionality of the amide and enamide bonds of compound 3-[( )-(dimethylamino)methylidene]-1,1-dimethylurea using advanced dynamic NMR experiments and a theoretical evaluation of the density functional theory (DFT) calculation. The dynamic NMR study shows restricted rotation around the amide group (16.4 kcal/mol) and a very high barrier around the enamine group (18.6 kcal/mol). In a structurally similar compound, ( )-3-(dimethylamino)- , -dimethylacrylamide (N atom is replaced by CH), the amide barrier is 12.4 kcal/mol and the enamine barrier is 11.7 kcal/mol. The DFT studies of both compounds reveal the electronic origin of this phenomenon. Theoretical calculations reveal the origin of the higher enamine barrier. The better delocalization of the lone pair of electrons on the end nitrogen atom into the antibonding orbital of the neighboring C-N double bond leads to the better stabilization of the ground state, and this leads to a greater increase in the enamine barrier.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28248004</identifier><identifier>PMID: 38138494</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>amide bond ; Bonds ; Chemical properties ; Density functionals ; DFT calculations ; dynamic NMR ; enamine bond ; Flexibility ; Nitrogen ; NMR ; Nuclear magnetic resonance ; Peptides ; reference deconvolution ; rotational barrier energy ; Spectrum analysis ; Temperature</subject><ispartof>Molecules (Basel, Switzerland), 2023-12, Vol.28 (24), p.8004</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3</citedby><cites>FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3</cites><orcidid>0000-0002-8475-8729 ; 0000-0002-8781-2866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904841383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904841383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38138494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vassilev, Nikolay G</creatorcontrib><creatorcontrib>Ivanov, Ivo C</creatorcontrib><title>A Small Change in Structure, a Big Change in Flexibility</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Studies of the rotational barrier energy of the amide bond using quantum computing and nuclear magnetic resonance (NMR) are focused mainly on its use as a model of the peptide bond. The results of these studies are valuable not only in terms of the fundamental conformational properties of amide bonds, but also in the design of molecular machines, which have recently attracted interest. We investigate the fluxionality of the amide and enamide bonds of compound 3-[( )-(dimethylamino)methylidene]-1,1-dimethylurea using advanced dynamic NMR experiments and a theoretical evaluation of the density functional theory (DFT) calculation. The dynamic NMR study shows restricted rotation around the amide group (16.4 kcal/mol) and a very high barrier around the enamine group (18.6 kcal/mol). In a structurally similar compound, ( )-3-(dimethylamino)- , -dimethylacrylamide (N atom is replaced by CH), the amide barrier is 12.4 kcal/mol and the enamine barrier is 11.7 kcal/mol. The DFT studies of both compounds reveal the electronic origin of this phenomenon. Theoretical calculations reveal the origin of the higher enamine barrier. The better delocalization of the lone pair of electrons on the end nitrogen atom into the antibonding orbital of the neighboring C-N double bond leads to the better stabilization of the ground state, and this leads to a greater increase in the enamine barrier.</description><subject>amide bond</subject><subject>Bonds</subject><subject>Chemical properties</subject><subject>Density functionals</subject><subject>DFT calculations</subject><subject>dynamic NMR</subject><subject>enamine bond</subject><subject>Flexibility</subject><subject>Nitrogen</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>reference deconvolution</subject><subject>rotational barrier energy</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtv1DAUhS0Eou3AD2CDIrHpotNeP-LHchhRqFSJRcvaunacwSMnLk4i0X9flylVBfLC1vV3jn3vIeQDhXPODVwMOQW_pDAxzYQGEK_IMRUM1hyEef3ifEROpmkPwKig7VtyxDXlWhhxTPSmuRkwpWb7E8ddaOLY3Mxl8fNSwlmDzee4e3F1mcLv6GKK8_078qbHNIX3T_uK_Lj8crv9tr7-_vVqu7lee6HUvBYKoHMoGdPeA2VAjWFCOdf7znAw3jMHQnJtpJIUQ8uklOiVQ98Fx3q-IlcH3y7j3t6VOGC5txmj_VPIZWexzNGnYI0yvXayc1I5IUAgtIie9w459X3Hqtfpweuu5F9LmGY7xMmHlHAMeZksM9C2jDEwFf30D7rPSxlrp4-U0KIOkFfq_EDtsL4fxz7PBX1dXRiiz2PoY61vlDJ18qoqVoQeBL7kaSqhf-6Ign3M1P6XadV8fPrK4obQPSv-hsgfALi3m3M</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Vassilev, Nikolay G</creator><creator>Ivanov, Ivo C</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8475-8729</orcidid><orcidid>https://orcid.org/0000-0002-8781-2866</orcidid></search><sort><creationdate>20231201</creationdate><title>A Small Change in Structure, a Big Change in Flexibility</title><author>Vassilev, Nikolay G ; Ivanov, Ivo C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amide bond</topic><topic>Bonds</topic><topic>Chemical properties</topic><topic>Density functionals</topic><topic>DFT calculations</topic><topic>dynamic NMR</topic><topic>enamine bond</topic><topic>Flexibility</topic><topic>Nitrogen</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>reference deconvolution</topic><topic>rotational barrier energy</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vassilev, Nikolay G</creatorcontrib><creatorcontrib>Ivanov, Ivo C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vassilev, Nikolay G</au><au>Ivanov, Ivo C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small Change in Structure, a Big Change in Flexibility</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>28</volume><issue>24</issue><spage>8004</spage><pages>8004-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Studies of the rotational barrier energy of the amide bond using quantum computing and nuclear magnetic resonance (NMR) are focused mainly on its use as a model of the peptide bond. The results of these studies are valuable not only in terms of the fundamental conformational properties of amide bonds, but also in the design of molecular machines, which have recently attracted interest. We investigate the fluxionality of the amide and enamide bonds of compound 3-[( )-(dimethylamino)methylidene]-1,1-dimethylurea using advanced dynamic NMR experiments and a theoretical evaluation of the density functional theory (DFT) calculation. The dynamic NMR study shows restricted rotation around the amide group (16.4 kcal/mol) and a very high barrier around the enamine group (18.6 kcal/mol). In a structurally similar compound, ( )-3-(dimethylamino)- , -dimethylacrylamide (N atom is replaced by CH), the amide barrier is 12.4 kcal/mol and the enamine barrier is 11.7 kcal/mol. The DFT studies of both compounds reveal the electronic origin of this phenomenon. Theoretical calculations reveal the origin of the higher enamine barrier. The better delocalization of the lone pair of electrons on the end nitrogen atom into the antibonding orbital of the neighboring C-N double bond leads to the better stabilization of the ground state, and this leads to a greater increase in the enamine barrier.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38138494</pmid><doi>10.3390/molecules28248004</doi><orcidid>https://orcid.org/0000-0002-8475-8729</orcidid><orcidid>https://orcid.org/0000-0002-8781-2866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2023-12, Vol.28 (24), p.8004
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_979f8b6db67b4404a05aac3fba31cfd2
source Publicly Available Content Database; PubMed Central
subjects amide bond
Bonds
Chemical properties
Density functionals
DFT calculations
dynamic NMR
enamine bond
Flexibility
Nitrogen
NMR
Nuclear magnetic resonance
Peptides
reference deconvolution
rotational barrier energy
Spectrum analysis
Temperature
title A Small Change in Structure, a Big Change in Flexibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small%20Change%20in%20Structure,%20a%20Big%20Change%20in%20Flexibility&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Vassilev,%20Nikolay%20G&rft.date=2023-12-01&rft.volume=28&rft.issue=24&rft.spage=8004&rft.pages=8004-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28248004&rft_dat=%3Cgale_doaj_%3EA779214738%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-4700dba6228cc0120199247bbfcd9309cc2b0463896761ae52666ac7bacdeb2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904841383&rft_id=info:pmid/38138494&rft_galeid=A779214738&rfr_iscdi=true