Loading…

Metasurface-Based Dual Polarized MIMO Antenna for 5G Smartphones Using CMA

This paper exhibits a low profile dual-polarized MIMO antenna with high isolation to meet the requirements of 5G smartphones. The integration between a vertically polarized slot and a horizontally polarized slot is investigated and applied for 28 GHz dual-polarized smartphone antenna. The antenna is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.37250-37264
Main Authors: Sultan, Kamel S., Abdullah, Haythem H., Abdallah, Esmat A., El-Hennawy, Hadia S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper exhibits a low profile dual-polarized MIMO antenna with high isolation to meet the requirements of 5G smartphones. The integration between a vertically polarized slot and a horizontally polarized slot is investigated and applied for 28 GHz dual-polarized smartphone antenna. The antenna is combined with metasurface (MTS) to achieve high gain and more directivity. In order to design the metasurface, the characteristic mode analysis is used to investigate the performance of MTS at 28 GHz. The proposed antenna achieves high isolation coefficients better than 40 dB and cross polarization lower than -40 dB from simulated and measured results. The isolation between elements is achieved without any additional decoupling techniques. The proposed MTS slot antenna operates with 4 GHz bandwidth (26-30 GHz) with a realized gain of 11 dBi and efficiency of 90%. Four antennas (with eight ports) are positioned orthogonally at the corners of the mobile PCB to serve MIMO for 5G applications. The effect of MIMO antenna on the human is taken into consideration in power density term. Furthermore, the housing and components of smartphones are taken into our consideration in this paper.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2975271