Loading…
A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes
Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse deco...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-09, Vol.15 (17), p.4316 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23 |
container_end_page | |
container_issue | 17 |
container_start_page | 4316 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Aliha, Aersi Liu, Yuhan Ma, Yapeng Hu, Yuxin Pan, Zongxu Zhou, Guangyao |
description | Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes. |
doi_str_mv | 10.3390/rs15174316 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764465356</galeid><doaj_id>oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7</doaj_id><sourcerecordid>A764465356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</originalsourceid><addsrcrecordid>eNpNkc1u1DAQxyMEUqvSS5_AEjektP6KnRyX5WulViDtco4m9njx4sTBTiu49R14Q54EL4uA8WH-Gv_npxlNVV0xei1ER29SZg3TUjD1pDrnVPNa8o4__U-fVZc5H2gJIVhH5XmVV2Q7w-Ih_Hz8scNxjgkCeRWi-VLfwWI--2lPPh5FvcMpx0TuosVAXFGbySVIaMl2hBDKx8PRvIO0x4W8xgXN4uNE_ETWcZwDfiNbgxPm59UzByHj5Z98UX16-2a3fl_ffni3Wa9uayMpXerGChTUIGe6kbpDIQdnbGcGJiRTRsmygREaW6UHxdpmkI51FhpuxYDWcXFRbU5cG-HQz8mPkL73EXz_uxDTvoe0eBOw7_RgAbhzxjWyBRi0VVY60xb0II0urBcn1pzi13vMS3-I92kq4_e8VVwLqhpRXNcn1x4K1E8uLglMeRZHb-KEzpf6Sispi71RpeHlqcGkmHNC93dMRvvjUft_RxW_ALralPk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862730653</pqid></control><display><type>article</type><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><source>Publicly Available Content Database</source><creator>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</creator><creatorcontrib>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</creatorcontrib><description>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15174316</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Approximation ; Background noise ; complex scenes ; Deep learning ; Efficiency ; Eigenvalues ; False alarms ; Hypothesis testing ; image block matching ; infrared small moving target detection ; local prior weights ; Matching ; Mathematical analysis ; Methods ; Moving targets ; Neural networks ; Qualitative analysis ; Remote sensing ; Sparsity ; Target detection ; Tensors ; Unmanned aerial vehicles</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-09, Vol.15 (17), p.4316</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</citedby><cites>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</cites><orcidid>0000-0002-6703-6820 ; 0009-0004-9816-3146 ; 0000-0003-4328-6427 ; 0000-0002-5041-3300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862730653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862730653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Aliha, Aersi</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Ma, Yapeng</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Pan, Zongxu</creatorcontrib><creatorcontrib>Zhou, Guangyao</creatorcontrib><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><title>Remote sensing (Basel, Switzerland)</title><description>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>complex scenes</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Eigenvalues</subject><subject>False alarms</subject><subject>Hypothesis testing</subject><subject>image block matching</subject><subject>infrared small moving target detection</subject><subject>local prior weights</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Qualitative analysis</subject><subject>Remote sensing</subject><subject>Sparsity</subject><subject>Target detection</subject><subject>Tensors</subject><subject>Unmanned aerial vehicles</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u1DAQxyMEUqvSS5_AEjektP6KnRyX5WulViDtco4m9njx4sTBTiu49R14Q54EL4uA8WH-Gv_npxlNVV0xei1ER29SZg3TUjD1pDrnVPNa8o4__U-fVZc5H2gJIVhH5XmVV2Q7w-Ih_Hz8scNxjgkCeRWi-VLfwWI--2lPPh5FvcMpx0TuosVAXFGbySVIaMl2hBDKx8PRvIO0x4W8xgXN4uNE_ETWcZwDfiNbgxPm59UzByHj5Z98UX16-2a3fl_ffni3Wa9uayMpXerGChTUIGe6kbpDIQdnbGcGJiRTRsmygREaW6UHxdpmkI51FhpuxYDWcXFRbU5cG-HQz8mPkL73EXz_uxDTvoe0eBOw7_RgAbhzxjWyBRi0VVY60xb0II0urBcn1pzi13vMS3-I92kq4_e8VVwLqhpRXNcn1x4K1E8uLglMeRZHb-KEzpf6Sispi71RpeHlqcGkmHNC93dMRvvjUft_RxW_ALralPk</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Aliha, Aersi</creator><creator>Liu, Yuhan</creator><creator>Ma, Yapeng</creator><creator>Hu, Yuxin</creator><creator>Pan, Zongxu</creator><creator>Zhou, Guangyao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6703-6820</orcidid><orcidid>https://orcid.org/0009-0004-9816-3146</orcidid><orcidid>https://orcid.org/0000-0003-4328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5041-3300</orcidid></search><sort><creationdate>20230901</creationdate><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><author>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>complex scenes</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Eigenvalues</topic><topic>False alarms</topic><topic>Hypothesis testing</topic><topic>image block matching</topic><topic>infrared small moving target detection</topic><topic>local prior weights</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Qualitative analysis</topic><topic>Remote sensing</topic><topic>Sparsity</topic><topic>Target detection</topic><topic>Tensors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliha, Aersi</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Ma, Yapeng</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Pan, Zongxu</creatorcontrib><creatorcontrib>Zhou, Guangyao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliha, Aersi</au><au>Liu, Yuhan</au><au>Ma, Yapeng</au><au>Hu, Yuxin</au><au>Pan, Zongxu</au><au>Zhou, Guangyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>4316</spage><pages>4316-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15174316</doi><orcidid>https://orcid.org/0000-0002-6703-6820</orcidid><orcidid>https://orcid.org/0009-0004-9816-3146</orcidid><orcidid>https://orcid.org/0000-0003-4328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5041-3300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-09, Vol.15 (17), p.4316 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Approximation Background noise complex scenes Deep learning Efficiency Eigenvalues False alarms Hypothesis testing image block matching infrared small moving target detection local prior weights Matching Mathematical analysis Methods Moving targets Neural networks Qualitative analysis Remote sensing Sparsity Target detection Tensors Unmanned aerial vehicles |
title | A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatial%E2%80%93Temporal%20Block-Matching%20Patch-Tensor%20Model%20for%20Infrared%20Small%20Moving%20Target%20Detection%20in%20Complex%20Scenes&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Aliha,%20Aersi&rft.date=2023-09-01&rft.volume=15&rft.issue=17&rft.spage=4316&rft.pages=4316-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15174316&rft_dat=%3Cgale_doaj_%3EA764465356%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862730653&rft_id=info:pmid/&rft_galeid=A764465356&rfr_iscdi=true |