Loading…

A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes

Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse deco...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-09, Vol.15 (17), p.4316
Main Authors: Aliha, Aersi, Liu, Yuhan, Ma, Yapeng, Hu, Yuxin, Pan, Zongxu, Zhou, Guangyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23
cites cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23
container_end_page
container_issue 17
container_start_page 4316
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Aliha, Aersi
Liu, Yuhan
Ma, Yapeng
Hu, Yuxin
Pan, Zongxu
Zhou, Guangyao
description Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.
doi_str_mv 10.3390/rs15174316
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764465356</galeid><doaj_id>oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7</doaj_id><sourcerecordid>A764465356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</originalsourceid><addsrcrecordid>eNpNkc1u1DAQxyMEUqvSS5_AEjektP6KnRyX5WulViDtco4m9njx4sTBTiu49R14Q54EL4uA8WH-Gv_npxlNVV0xei1ER29SZg3TUjD1pDrnVPNa8o4__U-fVZc5H2gJIVhH5XmVV2Q7w-Ih_Hz8scNxjgkCeRWi-VLfwWI--2lPPh5FvcMpx0TuosVAXFGbySVIaMl2hBDKx8PRvIO0x4W8xgXN4uNE_ETWcZwDfiNbgxPm59UzByHj5Z98UX16-2a3fl_ffni3Wa9uayMpXerGChTUIGe6kbpDIQdnbGcGJiRTRsmygREaW6UHxdpmkI51FhpuxYDWcXFRbU5cG-HQz8mPkL73EXz_uxDTvoe0eBOw7_RgAbhzxjWyBRi0VVY60xb0II0urBcn1pzi13vMS3-I92kq4_e8VVwLqhpRXNcn1x4K1E8uLglMeRZHb-KEzpf6Sispi71RpeHlqcGkmHNC93dMRvvjUft_RxW_ALralPk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862730653</pqid></control><display><type>article</type><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><source>Publicly Available Content Database</source><creator>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</creator><creatorcontrib>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</creatorcontrib><description>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15174316</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Approximation ; Background noise ; complex scenes ; Deep learning ; Efficiency ; Eigenvalues ; False alarms ; Hypothesis testing ; image block matching ; infrared small moving target detection ; local prior weights ; Matching ; Mathematical analysis ; Methods ; Moving targets ; Neural networks ; Qualitative analysis ; Remote sensing ; Sparsity ; Target detection ; Tensors ; Unmanned aerial vehicles</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-09, Vol.15 (17), p.4316</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</citedby><cites>FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</cites><orcidid>0000-0002-6703-6820 ; 0009-0004-9816-3146 ; 0000-0003-4328-6427 ; 0000-0002-5041-3300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862730653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862730653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Aliha, Aersi</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Ma, Yapeng</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Pan, Zongxu</creatorcontrib><creatorcontrib>Zhou, Guangyao</creatorcontrib><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><title>Remote sensing (Basel, Switzerland)</title><description>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>complex scenes</subject><subject>Deep learning</subject><subject>Efficiency</subject><subject>Eigenvalues</subject><subject>False alarms</subject><subject>Hypothesis testing</subject><subject>image block matching</subject><subject>infrared small moving target detection</subject><subject>local prior weights</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Qualitative analysis</subject><subject>Remote sensing</subject><subject>Sparsity</subject><subject>Target detection</subject><subject>Tensors</subject><subject>Unmanned aerial vehicles</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u1DAQxyMEUqvSS5_AEjektP6KnRyX5WulViDtco4m9njx4sTBTiu49R14Q54EL4uA8WH-Gv_npxlNVV0xei1ER29SZg3TUjD1pDrnVPNa8o4__U-fVZc5H2gJIVhH5XmVV2Q7w-Ih_Hz8scNxjgkCeRWi-VLfwWI--2lPPh5FvcMpx0TuosVAXFGbySVIaMl2hBDKx8PRvIO0x4W8xgXN4uNE_ETWcZwDfiNbgxPm59UzByHj5Z98UX16-2a3fl_ffni3Wa9uayMpXerGChTUIGe6kbpDIQdnbGcGJiRTRsmygREaW6UHxdpmkI51FhpuxYDWcXFRbU5cG-HQz8mPkL73EXz_uxDTvoe0eBOw7_RgAbhzxjWyBRi0VVY60xb0II0urBcn1pzi13vMS3-I92kq4_e8VVwLqhpRXNcn1x4K1E8uLglMeRZHb-KEzpf6Sispi71RpeHlqcGkmHNC93dMRvvjUft_RxW_ALralPk</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Aliha, Aersi</creator><creator>Liu, Yuhan</creator><creator>Ma, Yapeng</creator><creator>Hu, Yuxin</creator><creator>Pan, Zongxu</creator><creator>Zhou, Guangyao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6703-6820</orcidid><orcidid>https://orcid.org/0009-0004-9816-3146</orcidid><orcidid>https://orcid.org/0000-0003-4328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5041-3300</orcidid></search><sort><creationdate>20230901</creationdate><title>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</title><author>Aliha, Aersi ; Liu, Yuhan ; Ma, Yapeng ; Hu, Yuxin ; Pan, Zongxu ; Zhou, Guangyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>complex scenes</topic><topic>Deep learning</topic><topic>Efficiency</topic><topic>Eigenvalues</topic><topic>False alarms</topic><topic>Hypothesis testing</topic><topic>image block matching</topic><topic>infrared small moving target detection</topic><topic>local prior weights</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Qualitative analysis</topic><topic>Remote sensing</topic><topic>Sparsity</topic><topic>Target detection</topic><topic>Tensors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliha, Aersi</creatorcontrib><creatorcontrib>Liu, Yuhan</creatorcontrib><creatorcontrib>Ma, Yapeng</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><creatorcontrib>Pan, Zongxu</creatorcontrib><creatorcontrib>Zhou, Guangyao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliha, Aersi</au><au>Liu, Yuhan</au><au>Ma, Yapeng</au><au>Hu, Yuxin</au><au>Pan, Zongxu</au><au>Zhou, Guangyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>4316</spage><pages>4316-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Detecting infrared (IR) small moving targets in complex scenes quickly, accurately, and robustly remains a challenging problem in the current research field. To address this issue, this paper proposes a novel spatial–temporal block-matching patch-tensor (STBMPT) model based on a low-rank sparse decomposition (LRSD) framework. This model enhances the traditional infrared patch-tensor (IPT) model by incorporating joint spatial–temporal sampling to exploit inter-frame information and constructing a low-rank patch tensor using image block matching. Furthermore, a novel prior-weight calculation is introduced, utilizing the eigenvalues of the local structure tensor to suppress interference such as strong edges, corners, and point-like noise from the background. To improve detection efficiency, the tensor is constructed using a matching group instead of using a traditional sliding window. Finally, the background and target components are separated using the alternating direction method of multipliers (ADMM). Qualitative and quantitative experimental analysis in various scenes demonstrates the superior detection performance and efficiency of the proposed algorithm for detecting infrared small moving targets in complex scenes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15174316</doi><orcidid>https://orcid.org/0000-0002-6703-6820</orcidid><orcidid>https://orcid.org/0009-0004-9816-3146</orcidid><orcidid>https://orcid.org/0000-0003-4328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5041-3300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-09, Vol.15 (17), p.4316
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_97bdaa2ffcf548aab7d6d4fc87b6b4c7
source Publicly Available Content Database
subjects Accuracy
Algorithms
Approximation
Background noise
complex scenes
Deep learning
Efficiency
Eigenvalues
False alarms
Hypothesis testing
image block matching
infrared small moving target detection
local prior weights
Matching
Mathematical analysis
Methods
Moving targets
Neural networks
Qualitative analysis
Remote sensing
Sparsity
Target detection
Tensors
Unmanned aerial vehicles
title A Spatial–Temporal Block-Matching Patch-Tensor Model for Infrared Small Moving Target Detection in Complex Scenes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatial%E2%80%93Temporal%20Block-Matching%20Patch-Tensor%20Model%20for%20Infrared%20Small%20Moving%20Target%20Detection%20in%20Complex%20Scenes&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Aliha,%20Aersi&rft.date=2023-09-01&rft.volume=15&rft.issue=17&rft.spage=4316&rft.pages=4316-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15174316&rft_dat=%3Cgale_doaj_%3EA764465356%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-5d3e30ce2175479e34bfcd9cb13416c64190c37e867b6185b4f19da52d3bedf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862730653&rft_id=info:pmid/&rft_galeid=A764465356&rfr_iscdi=true