Loading…

Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios

Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) a...

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2024-08, Vol.8 (8), p.378
Main Authors: Liu, Yifei, Li, Xiaoshuai, Wang, Jian, Wei, Feiyu, Yang, Junan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953
container_end_page
container_issue 8
container_start_page 378
container_title Drones (Basel)
container_volume 8
creator Liu, Yifei
Li, Xiaoshuai
Wang, Jian
Wei, Feiyu
Yang, Junan
description Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.
doi_str_mv 10.3390/drones8080378
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807367193</galeid><doaj_id>oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1</doaj_id><sourcerecordid>A807367193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</originalsourceid><addsrcrecordid>eNpVkc1rGzEQxZfSQkOSY-6CnDfV6mMlHV03X-AQaNzSQ0BMpJEjY68caW3Ifx8lDiFFhxHDez9m5jXNSUfPODf0h89pwKKpplzpL80Bk1S0QvT_vn76f2-OS1lSShkTsjfdQXP_G-MQUna4xmFsZwh5iMOi_QkFPbnZrsbY_pn8JdOUNphhjDskd1XkHkl1kZu0q2oyh7zAsZA4EP6L3DkcIMdUjppvAVYFj9_rYTO_OJ9Pr9rZ7eX1dDJrHTNybA196DVVyL1E2eMDKtGBRnCdUQJo0F4KyXruPQsyAIigNeNCGmH6CuCHzfUe6xMs7SbHNeRnmyDat0bKCwt5jG6F1ignRQiOKs6FcBqQaeeFDmiQGegq63TP2uT0tMUy2mXa5qFObzk1ShvNlKmqs71qARX6esAxg6vP4zq6GkSItT-pS_FedYZXQ7s3uJxKyRg-xuyofc3P_pcffwE8MY1z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097898279</pqid></control><display><type>article</type><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><source>Publicly Available Content Database</source><creator>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</creator><creatorcontrib>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</creatorcontrib><description>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones8080378</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Adaptability ; Algorithms ; Altitude ; Collaboration ; Collision avoidance ; Cooperation ; cooperative target search ; Decision making ; Deep learning ; Design ; Drone aircraft ; Efficiency ; Flexibility ; Heuristic ; High altitude ; Low altitude ; Machine learning ; Moving targets ; multi-UAV ; Multiagent systems ; Neural networks ; Optimization ; Optimization algorithms ; Path planning ; Regional development ; reinforcement learning ; Reinforcement learning (Machine learning) ; Search algorithms ; Search methods ; Submarines ; Target detection ; Target masking ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>Drones (Basel), 2024-08, Vol.8 (8), p.378</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097898279/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097898279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Li, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wei, Feiyu</creatorcontrib><creatorcontrib>Yang, Junan</creatorcontrib><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><title>Drones (Basel)</title><description>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</description><subject>Ablation</subject><subject>Adaptability</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Collaboration</subject><subject>Collision avoidance</subject><subject>Cooperation</subject><subject>cooperative target search</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Design</subject><subject>Drone aircraft</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Heuristic</subject><subject>High altitude</subject><subject>Low altitude</subject><subject>Machine learning</subject><subject>Moving targets</subject><subject>multi-UAV</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Path planning</subject><subject>Regional development</subject><subject>reinforcement learning</subject><subject>Reinforcement learning (Machine learning)</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Submarines</subject><subject>Target detection</subject><subject>Target masking</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1rGzEQxZfSQkOSY-6CnDfV6mMlHV03X-AQaNzSQ0BMpJEjY68caW3Ifx8lDiFFhxHDez9m5jXNSUfPODf0h89pwKKpplzpL80Bk1S0QvT_vn76f2-OS1lSShkTsjfdQXP_G-MQUna4xmFsZwh5iMOi_QkFPbnZrsbY_pn8JdOUNphhjDskd1XkHkl1kZu0q2oyh7zAsZA4EP6L3DkcIMdUjppvAVYFj9_rYTO_OJ9Pr9rZ7eX1dDJrHTNybA196DVVyL1E2eMDKtGBRnCdUQJo0F4KyXruPQsyAIigNeNCGmH6CuCHzfUe6xMs7SbHNeRnmyDat0bKCwt5jG6F1ignRQiOKs6FcBqQaeeFDmiQGegq63TP2uT0tMUy2mXa5qFObzk1ShvNlKmqs71qARX6esAxg6vP4zq6GkSItT-pS_FedYZXQ7s3uJxKyRg-xuyofc3P_pcffwE8MY1z</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Yifei</creator><creator>Li, Xiaoshuai</creator><creator>Wang, Jian</creator><creator>Wei, Feiyu</creator><creator>Yang, Junan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20240801</creationdate><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><author>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptability</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Collaboration</topic><topic>Collision avoidance</topic><topic>Cooperation</topic><topic>cooperative target search</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Design</topic><topic>Drone aircraft</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Heuristic</topic><topic>High altitude</topic><topic>Low altitude</topic><topic>Machine learning</topic><topic>Moving targets</topic><topic>multi-UAV</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Path planning</topic><topic>Regional development</topic><topic>reinforcement learning</topic><topic>Reinforcement learning (Machine learning)</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Submarines</topic><topic>Target detection</topic><topic>Target masking</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Li, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wei, Feiyu</creatorcontrib><creatorcontrib>Yang, Junan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yifei</au><au>Li, Xiaoshuai</au><au>Wang, Jian</au><au>Wei, Feiyu</au><au>Yang, Junan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</atitle><jtitle>Drones (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>8</issue><spage>378</spage><pages>378-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones8080378</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-446X
ispartof Drones (Basel), 2024-08, Vol.8 (8), p.378
issn 2504-446X
2504-446X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1
source Publicly Available Content Database
subjects Ablation
Adaptability
Algorithms
Altitude
Collaboration
Collision avoidance
Cooperation
cooperative target search
Decision making
Deep learning
Design
Drone aircraft
Efficiency
Flexibility
Heuristic
High altitude
Low altitude
Machine learning
Moving targets
multi-UAV
Multiagent systems
Neural networks
Optimization
Optimization algorithms
Path planning
Regional development
reinforcement learning
Reinforcement learning (Machine learning)
Search algorithms
Search methods
Submarines
Target detection
Target masking
Uncertainty
Unmanned aerial vehicles
title Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement-Learning-Based%20Multi-UAV%20Cooperative%20Search%20for%20Moving%20Targets%20in%203D%20Scenarios&rft.jtitle=Drones%20(Basel)&rft.au=Liu,%20Yifei&rft.date=2024-08-01&rft.volume=8&rft.issue=8&rft.spage=378&rft.pages=378-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones8080378&rft_dat=%3Cgale_doaj_%3EA807367193%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097898279&rft_id=info:pmid/&rft_galeid=A807367193&rfr_iscdi=true