Loading…
Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios
Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) a...
Saved in:
Published in: | Drones (Basel) 2024-08, Vol.8 (8), p.378 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953 |
container_end_page | |
container_issue | 8 |
container_start_page | 378 |
container_title | Drones (Basel) |
container_volume | 8 |
creator | Liu, Yifei Li, Xiaoshuai Wang, Jian Wei, Feiyu Yang, Junan |
description | Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively. |
doi_str_mv | 10.3390/drones8080378 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807367193</galeid><doaj_id>oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1</doaj_id><sourcerecordid>A807367193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</originalsourceid><addsrcrecordid>eNpVkc1rGzEQxZfSQkOSY-6CnDfV6mMlHV03X-AQaNzSQ0BMpJEjY68caW3Ifx8lDiFFhxHDez9m5jXNSUfPODf0h89pwKKpplzpL80Bk1S0QvT_vn76f2-OS1lSShkTsjfdQXP_G-MQUna4xmFsZwh5iMOi_QkFPbnZrsbY_pn8JdOUNphhjDskd1XkHkl1kZu0q2oyh7zAsZA4EP6L3DkcIMdUjppvAVYFj9_rYTO_OJ9Pr9rZ7eX1dDJrHTNybA196DVVyL1E2eMDKtGBRnCdUQJo0F4KyXruPQsyAIigNeNCGmH6CuCHzfUe6xMs7SbHNeRnmyDat0bKCwt5jG6F1ignRQiOKs6FcBqQaeeFDmiQGegq63TP2uT0tMUy2mXa5qFObzk1ShvNlKmqs71qARX6esAxg6vP4zq6GkSItT-pS_FedYZXQ7s3uJxKyRg-xuyofc3P_pcffwE8MY1z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097898279</pqid></control><display><type>article</type><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><source>Publicly Available Content Database</source><creator>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</creator><creatorcontrib>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</creatorcontrib><description>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones8080378</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Adaptability ; Algorithms ; Altitude ; Collaboration ; Collision avoidance ; Cooperation ; cooperative target search ; Decision making ; Deep learning ; Design ; Drone aircraft ; Efficiency ; Flexibility ; Heuristic ; High altitude ; Low altitude ; Machine learning ; Moving targets ; multi-UAV ; Multiagent systems ; Neural networks ; Optimization ; Optimization algorithms ; Path planning ; Regional development ; reinforcement learning ; Reinforcement learning (Machine learning) ; Search algorithms ; Search methods ; Submarines ; Target detection ; Target masking ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>Drones (Basel), 2024-08, Vol.8 (8), p.378</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097898279/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097898279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Li, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wei, Feiyu</creatorcontrib><creatorcontrib>Yang, Junan</creatorcontrib><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><title>Drones (Basel)</title><description>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</description><subject>Ablation</subject><subject>Adaptability</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Collaboration</subject><subject>Collision avoidance</subject><subject>Cooperation</subject><subject>cooperative target search</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Design</subject><subject>Drone aircraft</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Heuristic</subject><subject>High altitude</subject><subject>Low altitude</subject><subject>Machine learning</subject><subject>Moving targets</subject><subject>multi-UAV</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Path planning</subject><subject>Regional development</subject><subject>reinforcement learning</subject><subject>Reinforcement learning (Machine learning)</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Submarines</subject><subject>Target detection</subject><subject>Target masking</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1rGzEQxZfSQkOSY-6CnDfV6mMlHV03X-AQaNzSQ0BMpJEjY68caW3Ifx8lDiFFhxHDez9m5jXNSUfPODf0h89pwKKpplzpL80Bk1S0QvT_vn76f2-OS1lSShkTsjfdQXP_G-MQUna4xmFsZwh5iMOi_QkFPbnZrsbY_pn8JdOUNphhjDskd1XkHkl1kZu0q2oyh7zAsZA4EP6L3DkcIMdUjppvAVYFj9_rYTO_OJ9Pr9rZ7eX1dDJrHTNybA196DVVyL1E2eMDKtGBRnCdUQJo0F4KyXruPQsyAIigNeNCGmH6CuCHzfUe6xMs7SbHNeRnmyDat0bKCwt5jG6F1ignRQiOKs6FcBqQaeeFDmiQGegq63TP2uT0tMUy2mXa5qFObzk1ShvNlKmqs71qARX6esAxg6vP4zq6GkSItT-pS_FedYZXQ7s3uJxKyRg-xuyofc3P_pcffwE8MY1z</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Yifei</creator><creator>Li, Xiaoshuai</creator><creator>Wang, Jian</creator><creator>Wei, Feiyu</creator><creator>Yang, Junan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20240801</creationdate><title>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</title><author>Liu, Yifei ; Li, Xiaoshuai ; Wang, Jian ; Wei, Feiyu ; Yang, Junan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptability</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Collaboration</topic><topic>Collision avoidance</topic><topic>Cooperation</topic><topic>cooperative target search</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Design</topic><topic>Drone aircraft</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Heuristic</topic><topic>High altitude</topic><topic>Low altitude</topic><topic>Machine learning</topic><topic>Moving targets</topic><topic>multi-UAV</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Path planning</topic><topic>Regional development</topic><topic>reinforcement learning</topic><topic>Reinforcement learning (Machine learning)</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Submarines</topic><topic>Target detection</topic><topic>Target masking</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yifei</creatorcontrib><creatorcontrib>Li, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wei, Feiyu</creatorcontrib><creatorcontrib>Yang, Junan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yifei</au><au>Li, Xiaoshuai</au><au>Wang, Jian</au><au>Wei, Feiyu</au><au>Yang, Junan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios</atitle><jtitle>Drones (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>8</volume><issue>8</issue><spage>378</spage><pages>378-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Most existing multi-UAV collaborative search methods only consider scenarios of two-dimensional path planning or static target search. To be close to the practical scenario, this paper proposes a path planning method based on an action-mask-based multi-agent proximal policy optimization (AM-MAPPO) algorithm for multiple UAVs searching for moving targets in three-dimensional (3D) environments. In particular, a multi-UAV high–low altitude collaborative search architecture is introduced that not only takes into account the extensive detection range of high-altitude UAVs but also leverages the benefit of the superior detection quality of low-altitude UAVs. The optimization objective of the search task is to minimize the uncertainty of the search area while maximizing the number of captured moving targets. The path planning problem for moving target search in a 3D environment is formulated and addressed using the AM-MAPPO algorithm. The proposed method incorporates a state representation mechanism based on field-of-view encoding to handle dynamic changes in neural network input dimensions and develops a rule-based target capture mechanism and an action-mask-based collision avoidance mechanism to enhance the AM-MAPPO algorithm’s convergence speed. Experimental results demonstrate that the proposed algorithm significantly reduces regional uncertainty and increases the number of captured moving targets compared to other deep reinforcement learning methods. Ablation studies further indicate that the proposed action mask mechanism, target capture mechanism, and collision avoidance mechanism of the AM-MAPPO algorithm can improve the algorithm’s effectiveness, target capture capability, and UAVs’ safety, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones8080378</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-446X |
ispartof | Drones (Basel), 2024-08, Vol.8 (8), p.378 |
issn | 2504-446X 2504-446X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97c54ffc073344c8ae28cd48fe9e29a1 |
source | Publicly Available Content Database |
subjects | Ablation Adaptability Algorithms Altitude Collaboration Collision avoidance Cooperation cooperative target search Decision making Deep learning Design Drone aircraft Efficiency Flexibility Heuristic High altitude Low altitude Machine learning Moving targets multi-UAV Multiagent systems Neural networks Optimization Optimization algorithms Path planning Regional development reinforcement learning Reinforcement learning (Machine learning) Search algorithms Search methods Submarines Target detection Target masking Uncertainty Unmanned aerial vehicles |
title | Reinforcement-Learning-Based Multi-UAV Cooperative Search for Moving Targets in 3D Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement-Learning-Based%20Multi-UAV%20Cooperative%20Search%20for%20Moving%20Targets%20in%203D%20Scenarios&rft.jtitle=Drones%20(Basel)&rft.au=Liu,%20Yifei&rft.date=2024-08-01&rft.volume=8&rft.issue=8&rft.spage=378&rft.pages=378-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones8080378&rft_dat=%3Cgale_doaj_%3EA807367193%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-90b6807e3d5e56ebe741a8eac1974a0f8d545263dd2f5faa4f88234594962953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097898279&rft_id=info:pmid/&rft_galeid=A807367193&rfr_iscdi=true |