Loading…
Precision information extraction for rare disease epidemiology at scale
The United Nations recently made a call to address the challenges of an estimated 300 million persons worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epidemiologic Information (EI) regarding prevalence and incidence data of rare disease...
Saved in:
Published in: | Journal of translational medicine 2023-02, Vol.21 (1), p.157-157, Article 157 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93 |
container_end_page | 157 |
container_issue | 1 |
container_start_page | 157 |
container_title | Journal of translational medicine |
container_volume | 21 |
creator | Kariampuzha, William Z Alyea, Gioconda Qu, Sue Sanjak, Jaleal Mathé, Ewy Sid, Eric Chatelaine, Haley Yadaw, Arjun Xu, Yanji Zhu, Qian |
description | The United Nations recently made a call to address the challenges of an estimated 300 million persons worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epidemiologic Information (EI) regarding prevalence and incidence data of rare diseases is sparse and current paradigms of identifying, extracting, and curating EI rely upon time-intensive, error-prone manual processes. With these limitations, a clear understanding of the variation in epidemiology and outcomes for rare disease patients is hampered. This challenges the public health of rare diseases patients through a lack of information necessary to prioritize research, policy decisions, therapeutic development, and health system allocations.
In this study, we developed a newly curated epidemiology corpus for Named Entity Recognition (NER), a deep learning framework, and a novel rare disease epidemiologic information pipeline named EpiPipeline4RD consisting of a web interface and Restful API. For the corpus creation, we programmatically gathered a representative sample of rare disease epidemiologic abstracts, utilized weakly-supervised machine learning techniques to label the dataset, and manually validated the labeled dataset. For the deep learning framework development, we fine-tuned our dataset and adapted the BioBERT model for NER. We measured the performance of our BioBERT model for epidemiology entity recognition quantitatively with precision, recall, and F1 and qualitatively through a comparison with Orphanet. We demonstrated the ability for our pipeline to gather, identify, and extract epidemiology information from rare disease abstracts through three case studies.
We developed a deep learning model to extract EI with overall F1 scores of 0.817 and 0.878, evaluated at the entity-level and token-level respectively, and which achieved comparable qualitative results to Orphanet's collection paradigm. Additionally, case studies of the rare diseases Classic homocystinuria, GRACILE syndrome, Phenylketonuria demonstrated the adequate recall of abstracts with epidemiology information, high precision of epidemiology information extraction through our deep learning model, and the increased efficiency of EpiPipeline4RD compared to a manual curation paradigm.
EpiPipeline4RD demonstrated high performance of EI extraction from rare disease literature to augment manual curation processes. This automated information curation paradigm will not only effect |
doi_str_mv | 10.1186/s12967-023-04011-y |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97c68f5ddac148e2af07b15e158462a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739066453</galeid><doaj_id>oai_doaj_org_article_97c68f5ddac148e2af07b15e158462a3</doaj_id><sourcerecordid>A739066453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93</originalsourceid><addsrcrecordid>eNptUstuFDEQtBCIPOAHOKCRuHCZ4PfjghRFJESKBAc4Wx67Z_FqZrzYsxH793h2Q8gi5INb7aqSu7oQekPwBSFafiiEGqlaTFmLOSak3T1Dp4Qr0wqt5PMn9Qk6K2WNMeWCm5fohEktBGH8FN18zeBjiWlq4tSnPLp5qeHXnJ3fl7XZZJehCbGAK9DAJgYYYxrSate4uSneDfAKvejdUOD1w32Ovl9_-nb1ub37cnN7dXnXeiHZ3FINwHjHaa-dAhm4kZhoTDoaBBZBY8MD6ZRyIELQOvREU9F5pjDjTgfDztHtQTckt7abHEeXdza5aPeNlFfW5Tn6AaxRXuq-6jhPuAbqeqw6IoAIzSV1rGp9PGhttt0IwcNUhx6ORI9fpvjDrtK9NUZRyXgVeP8gkNPPLZTZjrF4GAY3QdoWS5UmtNosaIW--we6Tts8VasWlBaEGC3_olbVUrssZFnDImovFTNYSi6Wf1_8B1XPshafJuhj7R8R6IHgcyolQ_84I8F2iZI9RMnWKNl9lOyukt4-deeR8ic77DdSiMNO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788511986</pqid></control><display><type>article</type><title>Precision information extraction for rare disease epidemiology at scale</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kariampuzha, William Z ; Alyea, Gioconda ; Qu, Sue ; Sanjak, Jaleal ; Mathé, Ewy ; Sid, Eric ; Chatelaine, Haley ; Yadaw, Arjun ; Xu, Yanji ; Zhu, Qian</creator><creatorcontrib>Kariampuzha, William Z ; Alyea, Gioconda ; Qu, Sue ; Sanjak, Jaleal ; Mathé, Ewy ; Sid, Eric ; Chatelaine, Haley ; Yadaw, Arjun ; Xu, Yanji ; Zhu, Qian</creatorcontrib><description>The United Nations recently made a call to address the challenges of an estimated 300 million persons worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epidemiologic Information (EI) regarding prevalence and incidence data of rare diseases is sparse and current paradigms of identifying, extracting, and curating EI rely upon time-intensive, error-prone manual processes. With these limitations, a clear understanding of the variation in epidemiology and outcomes for rare disease patients is hampered. This challenges the public health of rare diseases patients through a lack of information necessary to prioritize research, policy decisions, therapeutic development, and health system allocations.
In this study, we developed a newly curated epidemiology corpus for Named Entity Recognition (NER), a deep learning framework, and a novel rare disease epidemiologic information pipeline named EpiPipeline4RD consisting of a web interface and Restful API. For the corpus creation, we programmatically gathered a representative sample of rare disease epidemiologic abstracts, utilized weakly-supervised machine learning techniques to label the dataset, and manually validated the labeled dataset. For the deep learning framework development, we fine-tuned our dataset and adapted the BioBERT model for NER. We measured the performance of our BioBERT model for epidemiology entity recognition quantitatively with precision, recall, and F1 and qualitatively through a comparison with Orphanet. We demonstrated the ability for our pipeline to gather, identify, and extract epidemiology information from rare disease abstracts through three case studies.
We developed a deep learning model to extract EI with overall F1 scores of 0.817 and 0.878, evaluated at the entity-level and token-level respectively, and which achieved comparable qualitative results to Orphanet's collection paradigm. Additionally, case studies of the rare diseases Classic homocystinuria, GRACILE syndrome, Phenylketonuria demonstrated the adequate recall of abstracts with epidemiology information, high precision of epidemiology information extraction through our deep learning model, and the increased efficiency of EpiPipeline4RD compared to a manual curation paradigm.
EpiPipeline4RD demonstrated high performance of EI extraction from rare disease literature to augment manual curation processes. This automated information curation paradigm will not only effectively empower development of the NIH Genetic and Rare Diseases Information Center (GARD), but also support the public health of the rare disease community.</description><identifier>ISSN: 1479-5876</identifier><identifier>EISSN: 1479-5876</identifier><identifier>DOI: 10.1186/s12967-023-04011-y</identifier><identifier>PMID: 36855134</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acidosis, Lactic ; Case studies ; Cholestasis ; Datasets ; Deep learning ; Epidemiology ; Homocystinuria ; Humans ; Information processing ; Information Storage and Retrieval ; Labeling ; Machine learning ; Mathematical models ; Phenylketonuria ; Public Health ; Rare diseases ; Rare Diseases - diagnosis ; Rare Diseases - epidemiology ; Supervision</subject><ispartof>Journal of translational medicine, 2023-02, Vol.21 (1), p.157-157, Article 157</ispartof><rights>2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93</citedby><cites>FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93</cites><orcidid>0000-0002-4858-6333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972634/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2788511986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36855134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kariampuzha, William Z</creatorcontrib><creatorcontrib>Alyea, Gioconda</creatorcontrib><creatorcontrib>Qu, Sue</creatorcontrib><creatorcontrib>Sanjak, Jaleal</creatorcontrib><creatorcontrib>Mathé, Ewy</creatorcontrib><creatorcontrib>Sid, Eric</creatorcontrib><creatorcontrib>Chatelaine, Haley</creatorcontrib><creatorcontrib>Yadaw, Arjun</creatorcontrib><creatorcontrib>Xu, Yanji</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><title>Precision information extraction for rare disease epidemiology at scale</title><title>Journal of translational medicine</title><addtitle>J Transl Med</addtitle><description>The United Nations recently made a call to address the challenges of an estimated 300 million persons worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epidemiologic Information (EI) regarding prevalence and incidence data of rare diseases is sparse and current paradigms of identifying, extracting, and curating EI rely upon time-intensive, error-prone manual processes. With these limitations, a clear understanding of the variation in epidemiology and outcomes for rare disease patients is hampered. This challenges the public health of rare diseases patients through a lack of information necessary to prioritize research, policy decisions, therapeutic development, and health system allocations.
In this study, we developed a newly curated epidemiology corpus for Named Entity Recognition (NER), a deep learning framework, and a novel rare disease epidemiologic information pipeline named EpiPipeline4RD consisting of a web interface and Restful API. For the corpus creation, we programmatically gathered a representative sample of rare disease epidemiologic abstracts, utilized weakly-supervised machine learning techniques to label the dataset, and manually validated the labeled dataset. For the deep learning framework development, we fine-tuned our dataset and adapted the BioBERT model for NER. We measured the performance of our BioBERT model for epidemiology entity recognition quantitatively with precision, recall, and F1 and qualitatively through a comparison with Orphanet. We demonstrated the ability for our pipeline to gather, identify, and extract epidemiology information from rare disease abstracts through three case studies.
We developed a deep learning model to extract EI with overall F1 scores of 0.817 and 0.878, evaluated at the entity-level and token-level respectively, and which achieved comparable qualitative results to Orphanet's collection paradigm. Additionally, case studies of the rare diseases Classic homocystinuria, GRACILE syndrome, Phenylketonuria demonstrated the adequate recall of abstracts with epidemiology information, high precision of epidemiology information extraction through our deep learning model, and the increased efficiency of EpiPipeline4RD compared to a manual curation paradigm.
EpiPipeline4RD demonstrated high performance of EI extraction from rare disease literature to augment manual curation processes. This automated information curation paradigm will not only effectively empower development of the NIH Genetic and Rare Diseases Information Center (GARD), but also support the public health of the rare disease community.</description><subject>Acidosis, Lactic</subject><subject>Case studies</subject><subject>Cholestasis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Epidemiology</subject><subject>Homocystinuria</subject><subject>Humans</subject><subject>Information processing</subject><subject>Information Storage and Retrieval</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Phenylketonuria</subject><subject>Public Health</subject><subject>Rare diseases</subject><subject>Rare Diseases - diagnosis</subject><subject>Rare Diseases - epidemiology</subject><subject>Supervision</subject><issn>1479-5876</issn><issn>1479-5876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQtBCIPOAHOKCRuHCZ4PfjghRFJESKBAc4Wx67Z_FqZrzYsxH793h2Q8gi5INb7aqSu7oQekPwBSFafiiEGqlaTFmLOSak3T1Dp4Qr0wqt5PMn9Qk6K2WNMeWCm5fohEktBGH8FN18zeBjiWlq4tSnPLp5qeHXnJ3fl7XZZJehCbGAK9DAJgYYYxrSate4uSneDfAKvejdUOD1w32Ovl9_-nb1ub37cnN7dXnXeiHZ3FINwHjHaa-dAhm4kZhoTDoaBBZBY8MD6ZRyIELQOvREU9F5pjDjTgfDztHtQTckt7abHEeXdza5aPeNlFfW5Tn6AaxRXuq-6jhPuAbqeqw6IoAIzSV1rGp9PGhttt0IwcNUhx6ORI9fpvjDrtK9NUZRyXgVeP8gkNPPLZTZjrF4GAY3QdoWS5UmtNosaIW--we6Tts8VasWlBaEGC3_olbVUrssZFnDImovFTNYSi6Wf1_8B1XPshafJuhj7R8R6IHgcyolQ_84I8F2iZI9RMnWKNl9lOyukt4-deeR8ic77DdSiMNO</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Kariampuzha, William Z</creator><creator>Alyea, Gioconda</creator><creator>Qu, Sue</creator><creator>Sanjak, Jaleal</creator><creator>Mathé, Ewy</creator><creator>Sid, Eric</creator><creator>Chatelaine, Haley</creator><creator>Yadaw, Arjun</creator><creator>Xu, Yanji</creator><creator>Zhu, Qian</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4858-6333</orcidid></search><sort><creationdate>20230228</creationdate><title>Precision information extraction for rare disease epidemiology at scale</title><author>Kariampuzha, William Z ; Alyea, Gioconda ; Qu, Sue ; Sanjak, Jaleal ; Mathé, Ewy ; Sid, Eric ; Chatelaine, Haley ; Yadaw, Arjun ; Xu, Yanji ; Zhu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidosis, Lactic</topic><topic>Case studies</topic><topic>Cholestasis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Epidemiology</topic><topic>Homocystinuria</topic><topic>Humans</topic><topic>Information processing</topic><topic>Information Storage and Retrieval</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Phenylketonuria</topic><topic>Public Health</topic><topic>Rare diseases</topic><topic>Rare Diseases - diagnosis</topic><topic>Rare Diseases - epidemiology</topic><topic>Supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kariampuzha, William Z</creatorcontrib><creatorcontrib>Alyea, Gioconda</creatorcontrib><creatorcontrib>Qu, Sue</creatorcontrib><creatorcontrib>Sanjak, Jaleal</creatorcontrib><creatorcontrib>Mathé, Ewy</creatorcontrib><creatorcontrib>Sid, Eric</creatorcontrib><creatorcontrib>Chatelaine, Haley</creatorcontrib><creatorcontrib>Yadaw, Arjun</creatorcontrib><creatorcontrib>Xu, Yanji</creatorcontrib><creatorcontrib>Zhu, Qian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kariampuzha, William Z</au><au>Alyea, Gioconda</au><au>Qu, Sue</au><au>Sanjak, Jaleal</au><au>Mathé, Ewy</au><au>Sid, Eric</au><au>Chatelaine, Haley</au><au>Yadaw, Arjun</au><au>Xu, Yanji</au><au>Zhu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision information extraction for rare disease epidemiology at scale</atitle><jtitle>Journal of translational medicine</jtitle><addtitle>J Transl Med</addtitle><date>2023-02-28</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>157</spage><epage>157</epage><pages>157-157</pages><artnum>157</artnum><issn>1479-5876</issn><eissn>1479-5876</eissn><abstract>The United Nations recently made a call to address the challenges of an estimated 300 million persons worldwide living with a rare disease through the collection, analysis, and dissemination of disaggregated data. Epidemiologic Information (EI) regarding prevalence and incidence data of rare diseases is sparse and current paradigms of identifying, extracting, and curating EI rely upon time-intensive, error-prone manual processes. With these limitations, a clear understanding of the variation in epidemiology and outcomes for rare disease patients is hampered. This challenges the public health of rare diseases patients through a lack of information necessary to prioritize research, policy decisions, therapeutic development, and health system allocations.
In this study, we developed a newly curated epidemiology corpus for Named Entity Recognition (NER), a deep learning framework, and a novel rare disease epidemiologic information pipeline named EpiPipeline4RD consisting of a web interface and Restful API. For the corpus creation, we programmatically gathered a representative sample of rare disease epidemiologic abstracts, utilized weakly-supervised machine learning techniques to label the dataset, and manually validated the labeled dataset. For the deep learning framework development, we fine-tuned our dataset and adapted the BioBERT model for NER. We measured the performance of our BioBERT model for epidemiology entity recognition quantitatively with precision, recall, and F1 and qualitatively through a comparison with Orphanet. We demonstrated the ability for our pipeline to gather, identify, and extract epidemiology information from rare disease abstracts through three case studies.
We developed a deep learning model to extract EI with overall F1 scores of 0.817 and 0.878, evaluated at the entity-level and token-level respectively, and which achieved comparable qualitative results to Orphanet's collection paradigm. Additionally, case studies of the rare diseases Classic homocystinuria, GRACILE syndrome, Phenylketonuria demonstrated the adequate recall of abstracts with epidemiology information, high precision of epidemiology information extraction through our deep learning model, and the increased efficiency of EpiPipeline4RD compared to a manual curation paradigm.
EpiPipeline4RD demonstrated high performance of EI extraction from rare disease literature to augment manual curation processes. This automated information curation paradigm will not only effectively empower development of the NIH Genetic and Rare Diseases Information Center (GARD), but also support the public health of the rare disease community.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36855134</pmid><doi>10.1186/s12967-023-04011-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4858-6333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-5876 |
ispartof | Journal of translational medicine, 2023-02, Vol.21 (1), p.157-157, Article 157 |
issn | 1479-5876 1479-5876 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97c68f5ddac148e2af07b15e158462a3 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Acidosis, Lactic Case studies Cholestasis Datasets Deep learning Epidemiology Homocystinuria Humans Information processing Information Storage and Retrieval Labeling Machine learning Mathematical models Phenylketonuria Public Health Rare diseases Rare Diseases - diagnosis Rare Diseases - epidemiology Supervision |
title | Precision information extraction for rare disease epidemiology at scale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20information%20extraction%20for%20rare%20disease%20epidemiology%20at%20scale&rft.jtitle=Journal%20of%20translational%20medicine&rft.au=Kariampuzha,%20William%20Z&rft.date=2023-02-28&rft.volume=21&rft.issue=1&rft.spage=157&rft.epage=157&rft.pages=157-157&rft.artnum=157&rft.issn=1479-5876&rft.eissn=1479-5876&rft_id=info:doi/10.1186/s12967-023-04011-y&rft_dat=%3Cgale_doaj_%3EA739066453%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-28ee34b42f8a7e6d49601801b2d505d8094d1b77ae5dd88df1825bc37034a8d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788511986&rft_id=info:pmid/36855134&rft_galeid=A739066453&rfr_iscdi=true |