Loading…

ThalPred: a web-based prediction tool for discriminating thalassemia trait and iron deficiency anemia

The hypochromic microcytic anemia (HMA) commonly found in Thailand are iron deficiency anemia (IDA) and thalassemia trait (TT). Accurate discrimination between IDA and TT is an important issue and better methods are urgently needed. Although considerable RBC formulas and indices with various optimal...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical informatics and decision making 2019-11, Vol.19 (1), p.212-212, Article 212
Main Authors: Laengsri, V, Shoombuatong, W, Adirojananon, W, Nantasenamat, C, Prachayasittikul, V, Nuchnoi, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hypochromic microcytic anemia (HMA) commonly found in Thailand are iron deficiency anemia (IDA) and thalassemia trait (TT). Accurate discrimination between IDA and TT is an important issue and better methods are urgently needed. Although considerable RBC formulas and indices with various optimal cut-off values have been developed, distinguishing between IDA and TT is still a challenging problem due to the diversity of various anemic populations. To address this problem, it is desirable to develop an improved and automated prediction model for discriminating IDA from TT. We retrospectively collected laboratory data of HMA found in Thai adults. Five machine learnings, including k-nearest neighbor (k-NN), decision tree, random forest (RF), artificial neural network (ANN) and support vector machine (SVM), were applied to construct a discriminant model. Performance was assessed and compared with thirteen existing discriminant formulas and indices. The data of 186 patients (146 patients with TT and 40 with IDA) were enrolled. The interpretable rules derived from the RF model were proposed to demonstrate the combination of RBC indices for discriminating IDA from TT. A web-based tool 'ThalPred' was implemented using an SVM model based on seven RBC parameters. ThalPred achieved prediction results with an external accuracy, MCC and AUC of 95.59, 0.87 and 0.98, respectively. ThalPred and an interpretable rule were provided for distinguishing IDA from TT. For the convenience of health care team experimental scientists, a web-based tool has been established at http://codes.bio/thalpred/ by which users can easily get their desired screening test result without the need to go through the underlying mathematical and computational details.
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-019-0929-2