Loading…

Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region

The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations o...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2020-03, Vol.20 (5), p.3029-3040
Main Authors: Kacarab, Mary, Thornhill, K. Lee, Dobracki, Amie, Howell, Steven G, O'Brien, Joseph R, Freitag, Steffen, Poellot, Michael R, Wood, Robert, Zuidema, Paquita, Redemann, Jens, Nenes, Athanasios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3
cites cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3
container_end_page 3040
container_issue 5
container_start_page 3029
container_title Atmospheric chemistry and physics
container_volume 20
creator Kacarab, Mary
Thornhill, K. Lee
Dobracki, Amie
Howell, Steven G
O'Brien, Joseph R
Freitag, Steffen
Poellot, Michael R
Wood, Robert
Zuidema, Paquita
Redemann, Jens
Nenes, Athanasios
description The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) study focused on quantitatively understanding these interactions and their importance. Here we present measurements of cloud condensation nuclei (CCN) concentration, aerosol size distribution, and characteristic vertical updraft velocity (w∗) in and around the marine boundary layer (MBL) collected by the NASA P-3B aircraft during the August 2017 ORACLES deployment. BB aerosol levels vary considerably but systematically with time; high aerosol concentrations were observed in the MBL (800–1000 cm−3) early on, decreasing midcampaign to concentrations between 500 and 800 cm−3. By late August and early September, relatively clean MBL conditions were sampled (
doi_str_mv 10.5194/acp-20-3029-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617357817</galeid><doaj_id>oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8</doaj_id><sourcerecordid>A617357817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</originalsourceid><addsrcrecordid>eNptks1q3DAUhU1poGnafZeCrrpwIsmSLC8noU0HAoU02UZc68fRYFtTSYbmbfosebJqMiXNQNDiiMt3D_dKp6o-EXzKScfOQG9riusG064oxW-qYyIkrtuGsrcv7u-q9yltMKYcE3Zc3Z37MEFKqF_i7OcBgY0hhRFBQvD4ZwpmGSGHiIJD-d4iE8N2tBnNy9TbiPz8VE1hKQIpo1UeYc5eo2gHH-YP1ZGDMdmP__Skuv329ebie33143J9sbqqNZM414xbLYwRHPoecyCuZZhTAN0ZIfqGSgJUauYsARASiLBCaMcBlyUIpa45qdZ7XxNgo7bRTxAfVACvngohDgpiGWu0qmutIY1ltOt71jHcFbuWkb6TEjg2snh93nttY_i12JTVJpTHKeMryghrWSHb_9QAxdTPLuQIevJJq5UgbcNbSXbU6StUOcZOXofZOl_qBw1fDhoKk-3vPMCSklr_vD5k8Z7V5ctStO55cYLVLhSqhEJRrHahULtQNH8BYQGoiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414749887</pqid></control><display><type>article</type><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</creator><creatorcontrib>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</creatorcontrib><description>The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) study focused on quantitatively understanding these interactions and their importance. Here we present measurements of cloud condensation nuclei (CCN) concentration, aerosol size distribution, and characteristic vertical updraft velocity (w∗) in and around the marine boundary layer (MBL) collected by the NASA P-3B aircraft during the August 2017 ORACLES deployment. BB aerosol levels vary considerably but systematically with time; high aerosol concentrations were observed in the MBL (800–1000 cm−3) early on, decreasing midcampaign to concentrations between 500 and 800 cm−3. By late August and early September, relatively clean MBL conditions were sampled (&lt;500 cm−3). These data then drive a state-of-the-art droplet formation parameterization from which the predicted cloud droplet number and its sensitivity to aerosol and dynamical parameters are derived. Droplet closure was achieved to within 20 %. Droplet formation sensitivity to aerosol concentration, w∗, and the hygroscopicity parameter, κ, vary and contribute to the total droplet response in the MBL clouds. When aerosol concentrations exceed ∼900 cm−3 and maximum supersaturation approaches 0.1 %, droplet formation in the MBL enters a velocity-limited droplet activation regime, where the cloud droplet number responds weakly to CCN concentration increases. Below ∼500 cm−3, in a clean MBL, droplet formation is much more sensitive to changes in aerosol concentration than to changes in vertical updraft. In the competitive regime, where the MBL has intermediate pollution (500–800 cm−3), droplet formation becomes much more sensitive to hygroscopicity (κ) variations than it does in clean and polluted conditions. Higher concentrations increase the sensitivity to vertical velocity by more than 10-fold. We also find that characteristic vertical velocity plays a very important role in driving droplet formation in a more polluted MBL regime, in which even a small shift in w∗ may make a significant difference in droplet concentrations. Identifying regimes where droplet number variability is driven primarily by updraft velocity and not by aerosol concentration is key for interpreting aerosol indirect effects, especially with remote sensing. The droplet number responds proportionally to changes in characteristic velocity, offering the possibility of remote sensing of w∗ under velocity-limited conditions.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-3029-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosol concentrations ; Aerosol size distribution ; Aerosol-cloud interactions ; Aerosols ; Aircraft ; Altitude ; Biomass ; Biomass burning ; Boundary layers ; Burning ; Cloud condensation nuclei ; Cloud droplets ; Clouds ; Clouds (Meteorology) ; Condensation nuclei ; Decks ; Deployment ; Droplets ; Hygroscopicity ; Parameter sensitivity ; Parameterization ; Plumes ; Pollution ; Remote sensing ; Sensitivity ; Size distribution ; Supersaturation ; Time ; Updraft ; Velocity ; Vertical distribution ; Vertical velocities</subject><ispartof>Atmospheric chemistry and physics, 2020-03, Vol.20 (5), p.3029-3040</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</citedby><cites>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</cites><orcidid>0000-0003-4719-372X ; 0000-0002-1401-3828 ; 0000-0003-3873-9970 ; 0000-0002-2404-7984 ; 0000-0003-1951-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414749887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414749887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Kacarab, Mary</creatorcontrib><creatorcontrib>Thornhill, K. Lee</creatorcontrib><creatorcontrib>Dobracki, Amie</creatorcontrib><creatorcontrib>Howell, Steven G</creatorcontrib><creatorcontrib>O'Brien, Joseph R</creatorcontrib><creatorcontrib>Freitag, Steffen</creatorcontrib><creatorcontrib>Poellot, Michael R</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Zuidema, Paquita</creatorcontrib><creatorcontrib>Redemann, Jens</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><title>Atmospheric chemistry and physics</title><description>The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) study focused on quantitatively understanding these interactions and their importance. Here we present measurements of cloud condensation nuclei (CCN) concentration, aerosol size distribution, and characteristic vertical updraft velocity (w∗) in and around the marine boundary layer (MBL) collected by the NASA P-3B aircraft during the August 2017 ORACLES deployment. BB aerosol levels vary considerably but systematically with time; high aerosol concentrations were observed in the MBL (800–1000 cm−3) early on, decreasing midcampaign to concentrations between 500 and 800 cm−3. By late August and early September, relatively clean MBL conditions were sampled (&lt;500 cm−3). These data then drive a state-of-the-art droplet formation parameterization from which the predicted cloud droplet number and its sensitivity to aerosol and dynamical parameters are derived. Droplet closure was achieved to within 20 %. Droplet formation sensitivity to aerosol concentration, w∗, and the hygroscopicity parameter, κ, vary and contribute to the total droplet response in the MBL clouds. When aerosol concentrations exceed ∼900 cm−3 and maximum supersaturation approaches 0.1 %, droplet formation in the MBL enters a velocity-limited droplet activation regime, where the cloud droplet number responds weakly to CCN concentration increases. Below ∼500 cm−3, in a clean MBL, droplet formation is much more sensitive to changes in aerosol concentration than to changes in vertical updraft. In the competitive regime, where the MBL has intermediate pollution (500–800 cm−3), droplet formation becomes much more sensitive to hygroscopicity (κ) variations than it does in clean and polluted conditions. Higher concentrations increase the sensitivity to vertical velocity by more than 10-fold. We also find that characteristic vertical velocity plays a very important role in driving droplet formation in a more polluted MBL regime, in which even a small shift in w∗ may make a significant difference in droplet concentrations. Identifying regimes where droplet number variability is driven primarily by updraft velocity and not by aerosol concentration is key for interpreting aerosol indirect effects, especially with remote sensing. The droplet number responds proportionally to changes in characteristic velocity, offering the possibility of remote sensing of w∗ under velocity-limited conditions.</description><subject>Aerosol concentrations</subject><subject>Aerosol size distribution</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>Altitude</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Boundary layers</subject><subject>Burning</subject><subject>Cloud condensation nuclei</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Clouds (Meteorology)</subject><subject>Condensation nuclei</subject><subject>Decks</subject><subject>Deployment</subject><subject>Droplets</subject><subject>Hygroscopicity</subject><subject>Parameter sensitivity</subject><subject>Parameterization</subject><subject>Plumes</subject><subject>Pollution</subject><subject>Remote sensing</subject><subject>Sensitivity</subject><subject>Size distribution</subject><subject>Supersaturation</subject><subject>Time</subject><subject>Updraft</subject><subject>Velocity</subject><subject>Vertical distribution</subject><subject>Vertical velocities</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1q3DAUhU1poGnafZeCrrpwIsmSLC8noU0HAoU02UZc68fRYFtTSYbmbfosebJqMiXNQNDiiMt3D_dKp6o-EXzKScfOQG9riusG064oxW-qYyIkrtuGsrcv7u-q9yltMKYcE3Zc3Z37MEFKqF_i7OcBgY0hhRFBQvD4ZwpmGSGHiIJD-d4iE8N2tBnNy9TbiPz8VE1hKQIpo1UeYc5eo2gHH-YP1ZGDMdmP__Skuv329ebie33143J9sbqqNZM414xbLYwRHPoecyCuZZhTAN0ZIfqGSgJUauYsARASiLBCaMcBlyUIpa45qdZ7XxNgo7bRTxAfVACvngohDgpiGWu0qmutIY1ltOt71jHcFbuWkb6TEjg2snh93nttY_i12JTVJpTHKeMryghrWSHb_9QAxdTPLuQIevJJq5UgbcNbSXbU6StUOcZOXofZOl_qBw1fDhoKk-3vPMCSklr_vD5k8Z7V5ctStO55cYLVLhSqhEJRrHahULtQNH8BYQGoiw</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Kacarab, Mary</creator><creator>Thornhill, K. Lee</creator><creator>Dobracki, Amie</creator><creator>Howell, Steven G</creator><creator>O'Brien, Joseph R</creator><creator>Freitag, Steffen</creator><creator>Poellot, Michael R</creator><creator>Wood, Robert</creator><creator>Zuidema, Paquita</creator><creator>Redemann, Jens</creator><creator>Nenes, Athanasios</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4719-372X</orcidid><orcidid>https://orcid.org/0000-0002-1401-3828</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-2404-7984</orcidid><orcidid>https://orcid.org/0000-0003-1951-5576</orcidid></search><sort><creationdate>20200313</creationdate><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><author>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol concentrations</topic><topic>Aerosol size distribution</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>Altitude</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Boundary layers</topic><topic>Burning</topic><topic>Cloud condensation nuclei</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Clouds (Meteorology)</topic><topic>Condensation nuclei</topic><topic>Decks</topic><topic>Deployment</topic><topic>Droplets</topic><topic>Hygroscopicity</topic><topic>Parameter sensitivity</topic><topic>Parameterization</topic><topic>Plumes</topic><topic>Pollution</topic><topic>Remote sensing</topic><topic>Sensitivity</topic><topic>Size distribution</topic><topic>Supersaturation</topic><topic>Time</topic><topic>Updraft</topic><topic>Velocity</topic><topic>Vertical distribution</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kacarab, Mary</creatorcontrib><creatorcontrib>Thornhill, K. Lee</creatorcontrib><creatorcontrib>Dobracki, Amie</creatorcontrib><creatorcontrib>Howell, Steven G</creatorcontrib><creatorcontrib>O'Brien, Joseph R</creatorcontrib><creatorcontrib>Freitag, Steffen</creatorcontrib><creatorcontrib>Poellot, Michael R</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Zuidema, Paquita</creatorcontrib><creatorcontrib>Redemann, Jens</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kacarab, Mary</au><au>Thornhill, K. Lee</au><au>Dobracki, Amie</au><au>Howell, Steven G</au><au>O'Brien, Joseph R</au><au>Freitag, Steffen</au><au>Poellot, Michael R</au><au>Wood, Robert</au><au>Zuidema, Paquita</au><au>Redemann, Jens</au><au>Nenes, Athanasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-03-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>3029</spage><epage>3040</epage><pages>3029-3040</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) study focused on quantitatively understanding these interactions and their importance. Here we present measurements of cloud condensation nuclei (CCN) concentration, aerosol size distribution, and characteristic vertical updraft velocity (w∗) in and around the marine boundary layer (MBL) collected by the NASA P-3B aircraft during the August 2017 ORACLES deployment. BB aerosol levels vary considerably but systematically with time; high aerosol concentrations were observed in the MBL (800–1000 cm−3) early on, decreasing midcampaign to concentrations between 500 and 800 cm−3. By late August and early September, relatively clean MBL conditions were sampled (&lt;500 cm−3). These data then drive a state-of-the-art droplet formation parameterization from which the predicted cloud droplet number and its sensitivity to aerosol and dynamical parameters are derived. Droplet closure was achieved to within 20 %. Droplet formation sensitivity to aerosol concentration, w∗, and the hygroscopicity parameter, κ, vary and contribute to the total droplet response in the MBL clouds. When aerosol concentrations exceed ∼900 cm−3 and maximum supersaturation approaches 0.1 %, droplet formation in the MBL enters a velocity-limited droplet activation regime, where the cloud droplet number responds weakly to CCN concentration increases. Below ∼500 cm−3, in a clean MBL, droplet formation is much more sensitive to changes in aerosol concentration than to changes in vertical updraft. In the competitive regime, where the MBL has intermediate pollution (500–800 cm−3), droplet formation becomes much more sensitive to hygroscopicity (κ) variations than it does in clean and polluted conditions. Higher concentrations increase the sensitivity to vertical velocity by more than 10-fold. We also find that characteristic vertical velocity plays a very important role in driving droplet formation in a more polluted MBL regime, in which even a small shift in w∗ may make a significant difference in droplet concentrations. Identifying regimes where droplet number variability is driven primarily by updraft velocity and not by aerosol concentration is key for interpreting aerosol indirect effects, especially with remote sensing. The droplet number responds proportionally to changes in characteristic velocity, offering the possibility of remote sensing of w∗ under velocity-limited conditions.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-3029-2020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4719-372X</orcidid><orcidid>https://orcid.org/0000-0002-1401-3828</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-2404-7984</orcidid><orcidid>https://orcid.org/0000-0003-1951-5576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2020-03, Vol.20 (5), p.3029-3040
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8
source Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection
subjects Aerosol concentrations
Aerosol size distribution
Aerosol-cloud interactions
Aerosols
Aircraft
Altitude
Biomass
Biomass burning
Boundary layers
Burning
Cloud condensation nuclei
Cloud droplets
Clouds
Clouds (Meteorology)
Condensation nuclei
Decks
Deployment
Droplets
Hygroscopicity
Parameter sensitivity
Parameterization
Plumes
Pollution
Remote sensing
Sensitivity
Size distribution
Supersaturation
Time
Updraft
Velocity
Vertical distribution
Vertical velocities
title Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20burning%20aerosol%20as%20a%C2%A0modulator%20of%20the%20droplet%20number%20in%20the%20southeast%20Atlantic%20region&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Kacarab,%20Mary&rft.date=2020-03-13&rft.volume=20&rft.issue=5&rft.spage=3029&rft.epage=3040&rft.pages=3029-3040&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-3029-2020&rft_dat=%3Cgale_doaj_%3EA617357817%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414749887&rft_id=info:pmid/&rft_galeid=A617357817&rfr_iscdi=true