Loading…
Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region
The southeastern Atlantic (SEA) and its associated cloud deck, off the west coast of central Africa, is an area where aerosol–cloud interactions can have a strong radiative impact. Seasonally, extensive biomass burning (BB) aerosol plumes from southern Africa reach this area. The NASA ObseRvations o...
Saved in:
Published in: | Atmospheric chemistry and physics 2020-03, Vol.20 (5), p.3029-3040 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3 |
container_end_page | 3040 |
container_issue | 5 |
container_start_page | 3029 |
container_title | Atmospheric chemistry and physics |
container_volume | 20 |
creator | Kacarab, Mary Thornhill, K. Lee Dobracki, Amie Howell, Steven G O'Brien, Joseph R Freitag, Steffen Poellot, Michael R Wood, Robert Zuidema, Paquita Redemann, Jens Nenes, Athanasios |
description | The southeastern Atlantic (SEA) and its associated cloud deck, off
the west coast of central Africa, is an area where aerosol–cloud
interactions can have a strong radiative impact. Seasonally,
extensive biomass burning (BB) aerosol plumes from southern Africa
reach this area. The NASA ObseRvations of Aerosols above CLouds and
their intEractionS (ORACLES) study focused on quantitatively
understanding these interactions and their importance. Here we
present measurements of cloud condensation nuclei (CCN)
concentration, aerosol size distribution, and characteristic
vertical updraft velocity (w∗) in and around the marine boundary
layer (MBL) collected by the NASA P-3B aircraft during the August
2017 ORACLES deployment. BB aerosol levels vary considerably but
systematically with time; high aerosol concentrations were observed
in the MBL (800–1000 cm−3) early on, decreasing
midcampaign to concentrations between
500 and 800 cm−3. By late August and early September,
relatively clean MBL conditions were sampled ( |
doi_str_mv | 10.5194/acp-20-3029-2020 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617357817</galeid><doaj_id>oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8</doaj_id><sourcerecordid>A617357817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</originalsourceid><addsrcrecordid>eNptks1q3DAUhU1poGnafZeCrrpwIsmSLC8noU0HAoU02UZc68fRYFtTSYbmbfosebJqMiXNQNDiiMt3D_dKp6o-EXzKScfOQG9riusG064oxW-qYyIkrtuGsrcv7u-q9yltMKYcE3Zc3Z37MEFKqF_i7OcBgY0hhRFBQvD4ZwpmGSGHiIJD-d4iE8N2tBnNy9TbiPz8VE1hKQIpo1UeYc5eo2gHH-YP1ZGDMdmP__Skuv329ebie33143J9sbqqNZM414xbLYwRHPoecyCuZZhTAN0ZIfqGSgJUauYsARASiLBCaMcBlyUIpa45qdZ7XxNgo7bRTxAfVACvngohDgpiGWu0qmutIY1ltOt71jHcFbuWkb6TEjg2snh93nttY_i12JTVJpTHKeMryghrWSHb_9QAxdTPLuQIevJJq5UgbcNbSXbU6StUOcZOXofZOl_qBw1fDhoKk-3vPMCSklr_vD5k8Z7V5ctStO55cYLVLhSqhEJRrHahULtQNH8BYQGoiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414749887</pqid></control><display><type>article</type><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</creator><creatorcontrib>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</creatorcontrib><description>The southeastern Atlantic (SEA) and its associated cloud deck, off
the west coast of central Africa, is an area where aerosol–cloud
interactions can have a strong radiative impact. Seasonally,
extensive biomass burning (BB) aerosol plumes from southern Africa
reach this area. The NASA ObseRvations of Aerosols above CLouds and
their intEractionS (ORACLES) study focused on quantitatively
understanding these interactions and their importance. Here we
present measurements of cloud condensation nuclei (CCN)
concentration, aerosol size distribution, and characteristic
vertical updraft velocity (w∗) in and around the marine boundary
layer (MBL) collected by the NASA P-3B aircraft during the August
2017 ORACLES deployment. BB aerosol levels vary considerably but
systematically with time; high aerosol concentrations were observed
in the MBL (800–1000 cm−3) early on, decreasing
midcampaign to concentrations between
500 and 800 cm−3. By late August and early September,
relatively clean MBL conditions were sampled (<500 cm−3). These data then drive a state-of-the-art
droplet formation parameterization from which the predicted cloud
droplet number and its sensitivity to aerosol and dynamical
parameters are derived. Droplet closure was achieved to within
20 %. Droplet formation sensitivity to aerosol concentration,
w∗, and the hygroscopicity parameter, κ, vary and
contribute to the total droplet response in the MBL clouds. When
aerosol concentrations exceed ∼900 cm−3 and maximum
supersaturation approaches 0.1 %, droplet formation in the MBL
enters a velocity-limited droplet activation regime, where the cloud
droplet number responds weakly to CCN concentration increases. Below
∼500 cm−3, in a clean MBL, droplet formation is
much more sensitive to changes in aerosol concentration than to
changes in vertical updraft. In the competitive regime, where
the MBL has intermediate pollution (500–800 cm−3),
droplet formation becomes much more sensitive to hygroscopicity
(κ) variations than it does in clean and polluted
conditions. Higher concentrations increase the sensitivity to
vertical velocity by more than 10-fold. We also find that
characteristic vertical velocity plays a very important role in
driving droplet formation in a more polluted MBL regime, in which
even a small shift in w∗ may make a significant difference in
droplet concentrations. Identifying regimes where droplet number
variability is driven primarily by updraft velocity and not by aerosol
concentration is key for interpreting aerosol indirect effects,
especially with remote sensing. The droplet number responds
proportionally to changes in characteristic velocity, offering the
possibility of remote sensing of w∗ under velocity-limited
conditions.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-3029-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosol concentrations ; Aerosol size distribution ; Aerosol-cloud interactions ; Aerosols ; Aircraft ; Altitude ; Biomass ; Biomass burning ; Boundary layers ; Burning ; Cloud condensation nuclei ; Cloud droplets ; Clouds ; Clouds (Meteorology) ; Condensation nuclei ; Decks ; Deployment ; Droplets ; Hygroscopicity ; Parameter sensitivity ; Parameterization ; Plumes ; Pollution ; Remote sensing ; Sensitivity ; Size distribution ; Supersaturation ; Time ; Updraft ; Velocity ; Vertical distribution ; Vertical velocities</subject><ispartof>Atmospheric chemistry and physics, 2020-03, Vol.20 (5), p.3029-3040</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</citedby><cites>FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</cites><orcidid>0000-0003-4719-372X ; 0000-0002-1401-3828 ; 0000-0003-3873-9970 ; 0000-0002-2404-7984 ; 0000-0003-1951-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414749887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414749887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Kacarab, Mary</creatorcontrib><creatorcontrib>Thornhill, K. Lee</creatorcontrib><creatorcontrib>Dobracki, Amie</creatorcontrib><creatorcontrib>Howell, Steven G</creatorcontrib><creatorcontrib>O'Brien, Joseph R</creatorcontrib><creatorcontrib>Freitag, Steffen</creatorcontrib><creatorcontrib>Poellot, Michael R</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Zuidema, Paquita</creatorcontrib><creatorcontrib>Redemann, Jens</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><title>Atmospheric chemistry and physics</title><description>The southeastern Atlantic (SEA) and its associated cloud deck, off
the west coast of central Africa, is an area where aerosol–cloud
interactions can have a strong radiative impact. Seasonally,
extensive biomass burning (BB) aerosol plumes from southern Africa
reach this area. The NASA ObseRvations of Aerosols above CLouds and
their intEractionS (ORACLES) study focused on quantitatively
understanding these interactions and their importance. Here we
present measurements of cloud condensation nuclei (CCN)
concentration, aerosol size distribution, and characteristic
vertical updraft velocity (w∗) in and around the marine boundary
layer (MBL) collected by the NASA P-3B aircraft during the August
2017 ORACLES deployment. BB aerosol levels vary considerably but
systematically with time; high aerosol concentrations were observed
in the MBL (800–1000 cm−3) early on, decreasing
midcampaign to concentrations between
500 and 800 cm−3. By late August and early September,
relatively clean MBL conditions were sampled (<500 cm−3). These data then drive a state-of-the-art
droplet formation parameterization from which the predicted cloud
droplet number and its sensitivity to aerosol and dynamical
parameters are derived. Droplet closure was achieved to within
20 %. Droplet formation sensitivity to aerosol concentration,
w∗, and the hygroscopicity parameter, κ, vary and
contribute to the total droplet response in the MBL clouds. When
aerosol concentrations exceed ∼900 cm−3 and maximum
supersaturation approaches 0.1 %, droplet formation in the MBL
enters a velocity-limited droplet activation regime, where the cloud
droplet number responds weakly to CCN concentration increases. Below
∼500 cm−3, in a clean MBL, droplet formation is
much more sensitive to changes in aerosol concentration than to
changes in vertical updraft. In the competitive regime, where
the MBL has intermediate pollution (500–800 cm−3),
droplet formation becomes much more sensitive to hygroscopicity
(κ) variations than it does in clean and polluted
conditions. Higher concentrations increase the sensitivity to
vertical velocity by more than 10-fold. We also find that
characteristic vertical velocity plays a very important role in
driving droplet formation in a more polluted MBL regime, in which
even a small shift in w∗ may make a significant difference in
droplet concentrations. Identifying regimes where droplet number
variability is driven primarily by updraft velocity and not by aerosol
concentration is key for interpreting aerosol indirect effects,
especially with remote sensing. The droplet number responds
proportionally to changes in characteristic velocity, offering the
possibility of remote sensing of w∗ under velocity-limited
conditions.</description><subject>Aerosol concentrations</subject><subject>Aerosol size distribution</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>Altitude</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Boundary layers</subject><subject>Burning</subject><subject>Cloud condensation nuclei</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Clouds (Meteorology)</subject><subject>Condensation nuclei</subject><subject>Decks</subject><subject>Deployment</subject><subject>Droplets</subject><subject>Hygroscopicity</subject><subject>Parameter sensitivity</subject><subject>Parameterization</subject><subject>Plumes</subject><subject>Pollution</subject><subject>Remote sensing</subject><subject>Sensitivity</subject><subject>Size distribution</subject><subject>Supersaturation</subject><subject>Time</subject><subject>Updraft</subject><subject>Velocity</subject><subject>Vertical distribution</subject><subject>Vertical velocities</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1q3DAUhU1poGnafZeCrrpwIsmSLC8noU0HAoU02UZc68fRYFtTSYbmbfosebJqMiXNQNDiiMt3D_dKp6o-EXzKScfOQG9riusG064oxW-qYyIkrtuGsrcv7u-q9yltMKYcE3Zc3Z37MEFKqF_i7OcBgY0hhRFBQvD4ZwpmGSGHiIJD-d4iE8N2tBnNy9TbiPz8VE1hKQIpo1UeYc5eo2gHH-YP1ZGDMdmP__Skuv329ebie33143J9sbqqNZM414xbLYwRHPoecyCuZZhTAN0ZIfqGSgJUauYsARASiLBCaMcBlyUIpa45qdZ7XxNgo7bRTxAfVACvngohDgpiGWu0qmutIY1ltOt71jHcFbuWkb6TEjg2snh93nttY_i12JTVJpTHKeMryghrWSHb_9QAxdTPLuQIevJJq5UgbcNbSXbU6StUOcZOXofZOl_qBw1fDhoKk-3vPMCSklr_vD5k8Z7V5ctStO55cYLVLhSqhEJRrHahULtQNH8BYQGoiw</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Kacarab, Mary</creator><creator>Thornhill, K. Lee</creator><creator>Dobracki, Amie</creator><creator>Howell, Steven G</creator><creator>O'Brien, Joseph R</creator><creator>Freitag, Steffen</creator><creator>Poellot, Michael R</creator><creator>Wood, Robert</creator><creator>Zuidema, Paquita</creator><creator>Redemann, Jens</creator><creator>Nenes, Athanasios</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4719-372X</orcidid><orcidid>https://orcid.org/0000-0002-1401-3828</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-2404-7984</orcidid><orcidid>https://orcid.org/0000-0003-1951-5576</orcidid></search><sort><creationdate>20200313</creationdate><title>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</title><author>Kacarab, Mary ; Thornhill, K. Lee ; Dobracki, Amie ; Howell, Steven G ; O'Brien, Joseph R ; Freitag, Steffen ; Poellot, Michael R ; Wood, Robert ; Zuidema, Paquita ; Redemann, Jens ; Nenes, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol concentrations</topic><topic>Aerosol size distribution</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>Altitude</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Boundary layers</topic><topic>Burning</topic><topic>Cloud condensation nuclei</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Clouds (Meteorology)</topic><topic>Condensation nuclei</topic><topic>Decks</topic><topic>Deployment</topic><topic>Droplets</topic><topic>Hygroscopicity</topic><topic>Parameter sensitivity</topic><topic>Parameterization</topic><topic>Plumes</topic><topic>Pollution</topic><topic>Remote sensing</topic><topic>Sensitivity</topic><topic>Size distribution</topic><topic>Supersaturation</topic><topic>Time</topic><topic>Updraft</topic><topic>Velocity</topic><topic>Vertical distribution</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kacarab, Mary</creatorcontrib><creatorcontrib>Thornhill, K. Lee</creatorcontrib><creatorcontrib>Dobracki, Amie</creatorcontrib><creatorcontrib>Howell, Steven G</creatorcontrib><creatorcontrib>O'Brien, Joseph R</creatorcontrib><creatorcontrib>Freitag, Steffen</creatorcontrib><creatorcontrib>Poellot, Michael R</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Zuidema, Paquita</creatorcontrib><creatorcontrib>Redemann, Jens</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kacarab, Mary</au><au>Thornhill, K. Lee</au><au>Dobracki, Amie</au><au>Howell, Steven G</au><au>O'Brien, Joseph R</au><au>Freitag, Steffen</au><au>Poellot, Michael R</au><au>Wood, Robert</au><au>Zuidema, Paquita</au><au>Redemann, Jens</au><au>Nenes, Athanasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-03-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>3029</spage><epage>3040</epage><pages>3029-3040</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The southeastern Atlantic (SEA) and its associated cloud deck, off
the west coast of central Africa, is an area where aerosol–cloud
interactions can have a strong radiative impact. Seasonally,
extensive biomass burning (BB) aerosol plumes from southern Africa
reach this area. The NASA ObseRvations of Aerosols above CLouds and
their intEractionS (ORACLES) study focused on quantitatively
understanding these interactions and their importance. Here we
present measurements of cloud condensation nuclei (CCN)
concentration, aerosol size distribution, and characteristic
vertical updraft velocity (w∗) in and around the marine boundary
layer (MBL) collected by the NASA P-3B aircraft during the August
2017 ORACLES deployment. BB aerosol levels vary considerably but
systematically with time; high aerosol concentrations were observed
in the MBL (800–1000 cm−3) early on, decreasing
midcampaign to concentrations between
500 and 800 cm−3. By late August and early September,
relatively clean MBL conditions were sampled (<500 cm−3). These data then drive a state-of-the-art
droplet formation parameterization from which the predicted cloud
droplet number and its sensitivity to aerosol and dynamical
parameters are derived. Droplet closure was achieved to within
20 %. Droplet formation sensitivity to aerosol concentration,
w∗, and the hygroscopicity parameter, κ, vary and
contribute to the total droplet response in the MBL clouds. When
aerosol concentrations exceed ∼900 cm−3 and maximum
supersaturation approaches 0.1 %, droplet formation in the MBL
enters a velocity-limited droplet activation regime, where the cloud
droplet number responds weakly to CCN concentration increases. Below
∼500 cm−3, in a clean MBL, droplet formation is
much more sensitive to changes in aerosol concentration than to
changes in vertical updraft. In the competitive regime, where
the MBL has intermediate pollution (500–800 cm−3),
droplet formation becomes much more sensitive to hygroscopicity
(κ) variations than it does in clean and polluted
conditions. Higher concentrations increase the sensitivity to
vertical velocity by more than 10-fold. We also find that
characteristic vertical velocity plays a very important role in
driving droplet formation in a more polluted MBL regime, in which
even a small shift in w∗ may make a significant difference in
droplet concentrations. Identifying regimes where droplet number
variability is driven primarily by updraft velocity and not by aerosol
concentration is key for interpreting aerosol indirect effects,
especially with remote sensing. The droplet number responds
proportionally to changes in characteristic velocity, offering the
possibility of remote sensing of w∗ under velocity-limited
conditions.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-3029-2020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4719-372X</orcidid><orcidid>https://orcid.org/0000-0002-1401-3828</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-2404-7984</orcidid><orcidid>https://orcid.org/0000-0003-1951-5576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2020-03, Vol.20 (5), p.3029-3040 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_97ed13e429bb49409a16741b988a50d8 |
source | Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Aerosol concentrations Aerosol size distribution Aerosol-cloud interactions Aerosols Aircraft Altitude Biomass Biomass burning Boundary layers Burning Cloud condensation nuclei Cloud droplets Clouds Clouds (Meteorology) Condensation nuclei Decks Deployment Droplets Hygroscopicity Parameter sensitivity Parameterization Plumes Pollution Remote sensing Sensitivity Size distribution Supersaturation Time Updraft Velocity Vertical distribution Vertical velocities |
title | Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%20burning%20aerosol%20as%20a%C2%A0modulator%20of%20the%20droplet%20number%20in%20the%20southeast%20Atlantic%20region&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Kacarab,%20Mary&rft.date=2020-03-13&rft.volume=20&rft.issue=5&rft.spage=3029&rft.epage=3040&rft.pages=3029-3040&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-3029-2020&rft_dat=%3Cgale_doaj_%3EA617357817%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-45ec6dd65abb05a1f74052aac9d66b3281a28c4fe1aa68a16e66cf5a0501122f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414749887&rft_id=info:pmid/&rft_galeid=A617357817&rfr_iscdi=true |