Loading…

The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products

Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2020-07, Vol.11, p.1015-1015
Main Authors: Ravindran, Prabu, Thompson, Blaise J., Soares, Richard K., Wiedenhoeft, Alex C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783
cites cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783
container_end_page 1015
container_issue
container_start_page 1015
container_title Frontiers in plant science
container_volume 11
creator Ravindran, Prabu
Thompson, Blaise J.
Soares, Richard K.
Wiedenhoeft, Alex C.
description Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.
doi_str_mv 10.3389/fpls.2020.01015
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb</doaj_id><sourcerecordid>2430666611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</originalsourceid><addsrcrecordid>eNpVkctv1DAQhy0EolXpmauPHMjWj8R2OCBBxcJKRUViEb1Zfky2rrxxsBNE_3u83QrRucxT32jmh9BrSlacq_5imGJZMcLIilBCu2folArRNq1gN8__i0_QeSl3pFpHSN_Ll-iEM9m1VKpTZLe3gG_uY9rmNL7D6wh_go3wFl9PMDbf05JdTTZ7s4Pmoyng8VfjciouTcHhdYDo8cbDOIchODOHNOI04J8pefwtJ7-4ubxCLwYTC5w_-jP0Y_1pe_mlubr-vLn8cNW4lou5UdIMjnroGHjhnFGES6l8x6Q1RljZsZ47QUnvvLfC1qBVhlGhhkE6kIqfoc2R65O501MOe5PvdTJBPxRS3mmT5-Ai6F7RXrTKWgV9a72zngJ0ktTNvSGDraz3R9a02D14Vw_MJj6BPu2M4Vbv0m8tuRAdIxXw5hGQ068Fyqz3oTiI0YyQlqJZy4moRmkdvTiOHv5aMgz_1lCiD0Lrg9D6ILR-EJr_BROZnBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430666611</pqid></control><display><type>article</type><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><source>PubMed Central(OpenAccess)</source><creator>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</creator><creatorcontrib>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</creatorcontrib><description>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2020.01015</identifier><identifier>PMID: 32754178</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>charcoal identification ; convolutional neural networks ; deep learning ; forest products ; Plant Science ; sustainability ; wood identification</subject><ispartof>Frontiers in plant science, 2020-07, Vol.11, p.1015-1015</ispartof><rights>Copyright © 2020 Ravindran, Thompson, Soares and Wiedenhoeft 2020 Ravindran, Thompson, Soares and Wiedenhoeft</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</citedby><cites>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Ravindran, Prabu</creatorcontrib><creatorcontrib>Thompson, Blaise J.</creatorcontrib><creatorcontrib>Soares, Richard K.</creatorcontrib><creatorcontrib>Wiedenhoeft, Alex C.</creatorcontrib><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><title>Frontiers in plant science</title><description>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</description><subject>charcoal identification</subject><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>forest products</subject><subject>Plant Science</subject><subject>sustainability</subject><subject>wood identification</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctv1DAQhy0EolXpmauPHMjWj8R2OCBBxcJKRUViEb1Zfky2rrxxsBNE_3u83QrRucxT32jmh9BrSlacq_5imGJZMcLIilBCu2folArRNq1gN8__i0_QeSl3pFpHSN_Ll-iEM9m1VKpTZLe3gG_uY9rmNL7D6wh_go3wFl9PMDbf05JdTTZ7s4Pmoyng8VfjciouTcHhdYDo8cbDOIchODOHNOI04J8pefwtJ7-4ubxCLwYTC5w_-jP0Y_1pe_mlubr-vLn8cNW4lou5UdIMjnroGHjhnFGES6l8x6Q1RljZsZ47QUnvvLfC1qBVhlGhhkE6kIqfoc2R65O501MOe5PvdTJBPxRS3mmT5-Ai6F7RXrTKWgV9a72zngJ0ktTNvSGDraz3R9a02D14Vw_MJj6BPu2M4Vbv0m8tuRAdIxXw5hGQ068Fyqz3oTiI0YyQlqJZy4moRmkdvTiOHv5aMgz_1lCiD0Lrg9D6ILR-EJr_BROZnBg</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Ravindran, Prabu</creator><creator>Thompson, Blaise J.</creator><creator>Soares, Richard K.</creator><creator>Wiedenhoeft, Alex C.</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200710</creationdate><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><author>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>charcoal identification</topic><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>forest products</topic><topic>Plant Science</topic><topic>sustainability</topic><topic>wood identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravindran, Prabu</creatorcontrib><creatorcontrib>Thompson, Blaise J.</creatorcontrib><creatorcontrib>Soares, Richard K.</creatorcontrib><creatorcontrib>Wiedenhoeft, Alex C.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravindran, Prabu</au><au>Thompson, Blaise J.</au><au>Soares, Richard K.</au><au>Wiedenhoeft, Alex C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</atitle><jtitle>Frontiers in plant science</jtitle><date>2020-07-10</date><risdate>2020</risdate><volume>11</volume><spage>1015</spage><epage>1015</epage><pages>1015-1015</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</abstract><pub>Frontiers Media S.A</pub><pmid>32754178</pmid><doi>10.3389/fpls.2020.01015</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2020-07, Vol.11, p.1015-1015
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb
source PubMed Central(OpenAccess)
subjects charcoal identification
convolutional neural networks
deep learning
forest products
Plant Science
sustainability
wood identification
title The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20XyloTron:%20Flexible,%20Open-Source,%20Image-Based%20Macroscopic%20Field%20Identification%20of%20Wood%20Products&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Ravindran,%20Prabu&rft.date=2020-07-10&rft.volume=11&rft.spage=1015&rft.epage=1015&rft.pages=1015-1015&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2020.01015&rft_dat=%3Cproquest_doaj_%3E2430666611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430666611&rft_id=info:pmid/32754178&rfr_iscdi=true