Loading…
The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products
Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level...
Saved in:
Published in: | Frontiers in plant science 2020-07, Vol.11, p.1015-1015 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783 |
container_end_page | 1015 |
container_issue | |
container_start_page | 1015 |
container_title | Frontiers in plant science |
container_volume | 11 |
creator | Ravindran, Prabu Thompson, Blaise J. Soares, Richard K. Wiedenhoeft, Alex C. |
description | Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates. |
doi_str_mv | 10.3389/fpls.2020.01015 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb</doaj_id><sourcerecordid>2430666611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</originalsourceid><addsrcrecordid>eNpVkctv1DAQhy0EolXpmauPHMjWj8R2OCBBxcJKRUViEb1Zfky2rrxxsBNE_3u83QrRucxT32jmh9BrSlacq_5imGJZMcLIilBCu2folArRNq1gN8__i0_QeSl3pFpHSN_Ll-iEM9m1VKpTZLe3gG_uY9rmNL7D6wh_go3wFl9PMDbf05JdTTZ7s4Pmoyng8VfjciouTcHhdYDo8cbDOIchODOHNOI04J8pefwtJ7-4ubxCLwYTC5w_-jP0Y_1pe_mlubr-vLn8cNW4lou5UdIMjnroGHjhnFGES6l8x6Q1RljZsZ47QUnvvLfC1qBVhlGhhkE6kIqfoc2R65O501MOe5PvdTJBPxRS3mmT5-Ai6F7RXrTKWgV9a72zngJ0ktTNvSGDraz3R9a02D14Vw_MJj6BPu2M4Vbv0m8tuRAdIxXw5hGQ068Fyqz3oTiI0YyQlqJZy4moRmkdvTiOHv5aMgz_1lCiD0Lrg9D6ILR-EJr_BROZnBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430666611</pqid></control><display><type>article</type><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><source>PubMed Central(OpenAccess)</source><creator>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</creator><creatorcontrib>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</creatorcontrib><description>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2020.01015</identifier><identifier>PMID: 32754178</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>charcoal identification ; convolutional neural networks ; deep learning ; forest products ; Plant Science ; sustainability ; wood identification</subject><ispartof>Frontiers in plant science, 2020-07, Vol.11, p.1015-1015</ispartof><rights>Copyright © 2020 Ravindran, Thompson, Soares and Wiedenhoeft 2020 Ravindran, Thompson, Soares and Wiedenhoeft</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</citedby><cites>FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Ravindran, Prabu</creatorcontrib><creatorcontrib>Thompson, Blaise J.</creatorcontrib><creatorcontrib>Soares, Richard K.</creatorcontrib><creatorcontrib>Wiedenhoeft, Alex C.</creatorcontrib><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><title>Frontiers in plant science</title><description>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</description><subject>charcoal identification</subject><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>forest products</subject><subject>Plant Science</subject><subject>sustainability</subject><subject>wood identification</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctv1DAQhy0EolXpmauPHMjWj8R2OCBBxcJKRUViEb1Zfky2rrxxsBNE_3u83QrRucxT32jmh9BrSlacq_5imGJZMcLIilBCu2folArRNq1gN8__i0_QeSl3pFpHSN_Ll-iEM9m1VKpTZLe3gG_uY9rmNL7D6wh_go3wFl9PMDbf05JdTTZ7s4Pmoyng8VfjciouTcHhdYDo8cbDOIchODOHNOI04J8pefwtJ7-4ubxCLwYTC5w_-jP0Y_1pe_mlubr-vLn8cNW4lou5UdIMjnroGHjhnFGES6l8x6Q1RljZsZ47QUnvvLfC1qBVhlGhhkE6kIqfoc2R65O501MOe5PvdTJBPxRS3mmT5-Ai6F7RXrTKWgV9a72zngJ0ktTNvSGDraz3R9a02D14Vw_MJj6BPu2M4Vbv0m8tuRAdIxXw5hGQ068Fyqz3oTiI0YyQlqJZy4moRmkdvTiOHv5aMgz_1lCiD0Lrg9D6ILR-EJr_BROZnBg</recordid><startdate>20200710</startdate><enddate>20200710</enddate><creator>Ravindran, Prabu</creator><creator>Thompson, Blaise J.</creator><creator>Soares, Richard K.</creator><creator>Wiedenhoeft, Alex C.</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200710</creationdate><title>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</title><author>Ravindran, Prabu ; Thompson, Blaise J. ; Soares, Richard K. ; Wiedenhoeft, Alex C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>charcoal identification</topic><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>forest products</topic><topic>Plant Science</topic><topic>sustainability</topic><topic>wood identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravindran, Prabu</creatorcontrib><creatorcontrib>Thompson, Blaise J.</creatorcontrib><creatorcontrib>Soares, Richard K.</creatorcontrib><creatorcontrib>Wiedenhoeft, Alex C.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravindran, Prabu</au><au>Thompson, Blaise J.</au><au>Soares, Richard K.</au><au>Wiedenhoeft, Alex C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products</atitle><jtitle>Frontiers in plant science</jtitle><date>2020-07-10</date><risdate>2020</risdate><volume>11</volume><spage>1015</spage><epage>1015</epage><pages>1015-1015</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Forests, estimated to contain two thirds of the world’s biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.</abstract><pub>Frontiers Media S.A</pub><pmid>32754178</pmid><doi>10.3389/fpls.2020.01015</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2020-07, Vol.11, p.1015-1015 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9819648bb8e94bdcbd1ee570ed69a0fb |
source | PubMed Central(OpenAccess) |
subjects | charcoal identification convolutional neural networks deep learning forest products Plant Science sustainability wood identification |
title | The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20XyloTron:%20Flexible,%20Open-Source,%20Image-Based%20Macroscopic%20Field%20Identification%20of%20Wood%20Products&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Ravindran,%20Prabu&rft.date=2020-07-10&rft.volume=11&rft.spage=1015&rft.epage=1015&rft.pages=1015-1015&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2020.01015&rft_dat=%3Cproquest_doaj_%3E2430666611%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-87afc1de52ed6cca803778d527baa6b75293c6109cddb6b10948a2168ff7ce783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430666611&rft_id=info:pmid/32754178&rfr_iscdi=true |