Loading…

Bending analysis of FGM plates using sinusoidal shear and normal deformation theory

This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displ...

Full description

Saved in:
Bibliographic Details
Published in:Forces in mechanics 2023-05, Vol.11, p.100185, Article 100185
Main Authors: Yadav, Sunil S., Sangle, Keshav K., Shinde, Swapnil A., Pendhari, Sandeep S., Ghugal, Yuwaraj M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553
cites cdi_FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553
container_end_page
container_issue
container_start_page 100185
container_title Forces in mechanics
container_volume 11
creator Yadav, Sunil S.
Sangle, Keshav K.
Shinde, Swapnil A.
Pendhari, Sandeep S.
Ghugal, Yuwaraj M.
description This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.
doi_str_mv 10.1016/j.finmec.2023.100185
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9825205b13df408fa8c78437488a2745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666359723000203</els_id><doaj_id>oai_doaj_org_article_9825205b13df408fa8c78437488a2745</doaj_id><sourcerecordid>S2666359723000203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEtPYG3DoC2zkX5vsggQTG5OGOADnyE2cLVPXTEmHtLenpQhx4mJbn-2f7C_LbimZUULLu_3M-eaAZsYI451EqCoushEry3LKi7m8_FNfZ5OU9oQQpihlJRllb4_YWN9sc2igPief8uDy5eolP9bQYspPqW924ZSCt1DnaYcQu2mbNyEeOsGi64vWhyZvdxji-Sa7clAnnPzkcfaxfHpfPE83r6v14mEzNYKqdmpKyUuHspBQAUcKJVrkTvDKViCFtdxKVqAj0hqAOVMVuApRCkRm5kXBx9l64NoAe32M_gDxrAN4_S2EuNUQW29q1HPFCkaKinLrBFEOlJFKcCmUAiZFzxIDy8SQUkT3y6NE9z7rvR581r3PevC5W7sf1rD789Nj1Ml4bAxaH9G03SH-f8AX0VmJBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bending analysis of FGM plates using sinusoidal shear and normal deformation theory</title><source>Elsevier ScienceDirect Journals</source><creator>Yadav, Sunil S. ; Sangle, Keshav K. ; Shinde, Swapnil A. ; Pendhari, Sandeep S. ; Ghugal, Yuwaraj M.</creator><creatorcontrib>Yadav, Sunil S. ; Sangle, Keshav K. ; Shinde, Swapnil A. ; Pendhari, Sandeep S. ; Ghugal, Yuwaraj M.</creatorcontrib><description>This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.</description><identifier>ISSN: 2666-3597</identifier><identifier>EISSN: 2666-3597</identifier><identifier>DOI: 10.1016/j.finmec.2023.100185</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Displacements ; FGM ; Power law ; Sinusoidal shear deformation theory ; Stresses ; Thick plate</subject><ispartof>Forces in mechanics, 2023-05, Vol.11, p.100185, Article 100185</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553</citedby><cites>FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553</cites><orcidid>0000-0003-2303-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666359723000203$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Yadav, Sunil S.</creatorcontrib><creatorcontrib>Sangle, Keshav K.</creatorcontrib><creatorcontrib>Shinde, Swapnil A.</creatorcontrib><creatorcontrib>Pendhari, Sandeep S.</creatorcontrib><creatorcontrib>Ghugal, Yuwaraj M.</creatorcontrib><title>Bending analysis of FGM plates using sinusoidal shear and normal deformation theory</title><title>Forces in mechanics</title><description>This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.</description><subject>Displacements</subject><subject>FGM</subject><subject>Power law</subject><subject>Sinusoidal shear deformation theory</subject><subject>Stresses</subject><subject>Thick plate</subject><issn>2666-3597</issn><issn>2666-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM9OwzAMxisEEtPYG3DoC2zkX5vsggQTG5OGOADnyE2cLVPXTEmHtLenpQhx4mJbn-2f7C_LbimZUULLu_3M-eaAZsYI451EqCoushEry3LKi7m8_FNfZ5OU9oQQpihlJRllb4_YWN9sc2igPief8uDy5eolP9bQYspPqW924ZSCt1DnaYcQu2mbNyEeOsGi64vWhyZvdxji-Sa7clAnnPzkcfaxfHpfPE83r6v14mEzNYKqdmpKyUuHspBQAUcKJVrkTvDKViCFtdxKVqAj0hqAOVMVuApRCkRm5kXBx9l64NoAe32M_gDxrAN4_S2EuNUQW29q1HPFCkaKinLrBFEOlJFKcCmUAiZFzxIDy8SQUkT3y6NE9z7rvR581r3PevC5W7sf1rD789Nj1Ml4bAxaH9G03SH-f8AX0VmJBg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Yadav, Sunil S.</creator><creator>Sangle, Keshav K.</creator><creator>Shinde, Swapnil A.</creator><creator>Pendhari, Sandeep S.</creator><creator>Ghugal, Yuwaraj M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2303-4468</orcidid></search><sort><creationdate>202305</creationdate><title>Bending analysis of FGM plates using sinusoidal shear and normal deformation theory</title><author>Yadav, Sunil S. ; Sangle, Keshav K. ; Shinde, Swapnil A. ; Pendhari, Sandeep S. ; Ghugal, Yuwaraj M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Displacements</topic><topic>FGM</topic><topic>Power law</topic><topic>Sinusoidal shear deformation theory</topic><topic>Stresses</topic><topic>Thick plate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Sunil S.</creatorcontrib><creatorcontrib>Sangle, Keshav K.</creatorcontrib><creatorcontrib>Shinde, Swapnil A.</creatorcontrib><creatorcontrib>Pendhari, Sandeep S.</creatorcontrib><creatorcontrib>Ghugal, Yuwaraj M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forces in mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Sunil S.</au><au>Sangle, Keshav K.</au><au>Shinde, Swapnil A.</au><au>Pendhari, Sandeep S.</au><au>Ghugal, Yuwaraj M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending analysis of FGM plates using sinusoidal shear and normal deformation theory</atitle><jtitle>Forces in mechanics</jtitle><date>2023-05</date><risdate>2023</risdate><volume>11</volume><spage>100185</spage><pages>100185-</pages><artnum>100185</artnum><issn>2666-3597</issn><eissn>2666-3597</eissn><abstract>This paper presents the bending analysis of functionally graded material (FGM) plates using sinusoidal shear and normal deformation theory. The in-plane displacements include sinusoidal functions in the thickness coordinate to consider the effect of transverse shear deformation, and transverse displacement includes the effect of transverse normal strain using the cosine function in thickness coordinate. The displacement field of the theory enforces to satisfy shear stress-free boundary conditions on the top and bottom surfaces of the plate with realistic variations across the thickness. Plate material properties vary across thickness directions according to a power law. The boundary value problem of the theory is derived using the principle of virtual work. Simply supported plate bending problems are solved using the Navier solution technique. Response of the plate is obtained with respect to the type of load, type of plate, aspect ratio, and power law index. The results of present theory are compared with those of quasi-3D discrete layer theory and semi-analytical solutions based on the theory of elasticity to ensure the accuracy of theory. The current theory showed excellent agreement with more exact theories in bending response.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.finmec.2023.100185</doi><orcidid>https://orcid.org/0000-0003-2303-4468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3597
ispartof Forces in mechanics, 2023-05, Vol.11, p.100185, Article 100185
issn 2666-3597
2666-3597
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9825205b13df408fa8c78437488a2745
source Elsevier ScienceDirect Journals
subjects Displacements
FGM
Power law
Sinusoidal shear deformation theory
Stresses
Thick plate
title Bending analysis of FGM plates using sinusoidal shear and normal deformation theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20analysis%20of%20FGM%20plates%20using%20sinusoidal%20shear%20and%20normal%20deformation%20theory&rft.jtitle=Forces%20in%20mechanics&rft.au=Yadav,%20Sunil%20S.&rft.date=2023-05&rft.volume=11&rft.spage=100185&rft.pages=100185-&rft.artnum=100185&rft.issn=2666-3597&rft.eissn=2666-3597&rft_id=info:doi/10.1016/j.finmec.2023.100185&rft_dat=%3Celsevier_doaj_%3ES2666359723000203%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-c6736fe757aba3e1a6ede3f43bdba74dd3d725ef07dcaa928bafbee74ee2c9553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true