Loading…
Generation and annihilation time of magnetic droplet solitons
Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their c...
Saved in:
Published in: | Scientific reports 2018-05, Vol.8 (1), p.6847-6, Article 6847 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293 |
container_end_page | 6 |
container_issue | 1 |
container_start_page | 6847 |
container_title | Scientific reports |
container_volume | 8 |
creator | Hang, Jinting Hahn, Christian Statuto, Nahuel Macià, Ferran Kent, Andrew D. |
description | Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their creation and there is now clear experimental evidence for their formation, including direct images obtained with scanning x-ray transmission microscopy. Interest in magnetic droplets is associated with their unique magnetic dynamics that can lead to new types of high frequency nanometer scale oscillators of interest for information processing, including in neuromorphic computing. However, there are no direct measurements of the time required to nucleate droplet solitons or their lifetime–experiments to date only probe their steady-state characteristics, their response to dc spin-currents. Here we determine the timescales for droplet annihilation and generation using current pulses. Annihilation occurs in a few nanoseconds while generation can take several nanoseconds to a microsecond depending on the pulse amplitude. Micromagnetic simulations show that there is an incubation time for droplet generation that depends sensitively on the initial magnetic state of the nanocontact. An understanding of these processes is essential to utilizing the unique characteristics of magnetic droplet solitons oscillators, including their high frequency, tunable and hysteretic response. |
doi_str_mv | 10.1038/s41598-018-25134-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_983f445927e14947b8c9fceaf6099cc4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_983f445927e14947b8c9fceaf6099cc4</doaj_id><sourcerecordid>2033292736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293</originalsourceid><addsrcrecordid>eNp9UU1rHDEMNaElCdv8gR7CQC-9TOPPGfuQQgltEgj00p6N15Y3XmbsjT1bSH59vTtpvg61MRLS05Osh9BHgr8QzORZ4UQo2WIiWyoI4-3DATqmmIuWMkrfvfCP0Ekpa1yPoIoTdYiOqOpJvfQYnV9ChGymkGJjoqsvhtswzIEpjNAk34xmFWEKtnE5bQaYmpKGMKVYPqD33gwFTh7tAv3-8f3XxVV78_Py-uLbTWsFx1MLpGNGEWt76oBiwuWSWtlh11mnrPeOdz0V0siOe6yMsoYY4jCxcmepYgt0PfO6ZNZ6k8No8r1OJuh9IOWVNrkOOIBWknnOhaI9EK54v5RWeQvGd1gpa3nl-jpzbbbLEZyFOGUzvCJ9nakL0av0RwvFiKi7X6DPjwQ53W2hTHoMxcIwmAhpWzTFjLFesW7X69Mb6Dptc6yr2qNonZJ1FUVnlM2plAz-aRiC9U5sPYutq9h6L7Z-qEWnL7_xVPJP2gpgM6DUVFxBfu79H9q_HXu1FA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033292736</pqid></control><display><type>article</type><title>Generation and annihilation time of magnetic droplet solitons</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hang, Jinting ; Hahn, Christian ; Statuto, Nahuel ; Macià, Ferran ; Kent, Andrew D.</creator><creatorcontrib>Hang, Jinting ; Hahn, Christian ; Statuto, Nahuel ; Macià, Ferran ; Kent, Andrew D.</creatorcontrib><description>Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their creation and there is now clear experimental evidence for their formation, including direct images obtained with scanning x-ray transmission microscopy. Interest in magnetic droplets is associated with their unique magnetic dynamics that can lead to new types of high frequency nanometer scale oscillators of interest for information processing, including in neuromorphic computing. However, there are no direct measurements of the time required to nucleate droplet solitons or their lifetime–experiments to date only probe their steady-state characteristics, their response to dc spin-currents. Here we determine the timescales for droplet annihilation and generation using current pulses. Annihilation occurs in a few nanoseconds while generation can take several nanoseconds to a microsecond depending on the pulse amplitude. Micromagnetic simulations show that there is an incubation time for droplet generation that depends sensitively on the initial magnetic state of the nanocontact. An understanding of these processes is essential to utilizing the unique characteristics of magnetic droplet solitons oscillators, including their high frequency, tunable and hysteretic response.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-25134-z</identifier><identifier>PMID: 29717172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/925/927/1062 ; Anisotropy ; Experiments ; Humanities and Social Sciences ; Information processing ; multidisciplinary ; Oscillators ; Probability ; Science ; Science (multidisciplinary) ; Standard deviation ; Thin films</subject><ispartof>Scientific reports, 2018-05, Vol.8 (1), p.6847-6, Article 6847</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293</citedby><cites>FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293</cites><orcidid>0000-0001-5972-4810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2033292736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2033292736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29717172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hang, Jinting</creatorcontrib><creatorcontrib>Hahn, Christian</creatorcontrib><creatorcontrib>Statuto, Nahuel</creatorcontrib><creatorcontrib>Macià, Ferran</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><title>Generation and annihilation time of magnetic droplet solitons</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their creation and there is now clear experimental evidence for their formation, including direct images obtained with scanning x-ray transmission microscopy. Interest in magnetic droplets is associated with their unique magnetic dynamics that can lead to new types of high frequency nanometer scale oscillators of interest for information processing, including in neuromorphic computing. However, there are no direct measurements of the time required to nucleate droplet solitons or their lifetime–experiments to date only probe their steady-state characteristics, their response to dc spin-currents. Here we determine the timescales for droplet annihilation and generation using current pulses. Annihilation occurs in a few nanoseconds while generation can take several nanoseconds to a microsecond depending on the pulse amplitude. Micromagnetic simulations show that there is an incubation time for droplet generation that depends sensitively on the initial magnetic state of the nanocontact. An understanding of these processes is essential to utilizing the unique characteristics of magnetic droplet solitons oscillators, including their high frequency, tunable and hysteretic response.</description><subject>639/301/1023/1026</subject><subject>639/925/927/1062</subject><subject>Anisotropy</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>multidisciplinary</subject><subject>Oscillators</subject><subject>Probability</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Standard deviation</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rHDEMNaElCdv8gR7CQC-9TOPPGfuQQgltEgj00p6N15Y3XmbsjT1bSH59vTtpvg61MRLS05Osh9BHgr8QzORZ4UQo2WIiWyoI4-3DATqmmIuWMkrfvfCP0Ekpa1yPoIoTdYiOqOpJvfQYnV9ChGymkGJjoqsvhtswzIEpjNAk34xmFWEKtnE5bQaYmpKGMKVYPqD33gwFTh7tAv3-8f3XxVV78_Py-uLbTWsFx1MLpGNGEWt76oBiwuWSWtlh11mnrPeOdz0V0siOe6yMsoYY4jCxcmepYgt0PfO6ZNZ6k8No8r1OJuh9IOWVNrkOOIBWknnOhaI9EK54v5RWeQvGd1gpa3nl-jpzbbbLEZyFOGUzvCJ9nakL0av0RwvFiKi7X6DPjwQ53W2hTHoMxcIwmAhpWzTFjLFesW7X69Mb6Dptc6yr2qNonZJ1FUVnlM2plAz-aRiC9U5sPYutq9h6L7Z-qEWnL7_xVPJP2gpgM6DUVFxBfu79H9q_HXu1FA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hang, Jinting</creator><creator>Hahn, Christian</creator><creator>Statuto, Nahuel</creator><creator>Macià, Ferran</creator><creator>Kent, Andrew D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5972-4810</orcidid></search><sort><creationdate>20180501</creationdate><title>Generation and annihilation time of magnetic droplet solitons</title><author>Hang, Jinting ; Hahn, Christian ; Statuto, Nahuel ; Macià, Ferran ; Kent, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1023/1026</topic><topic>639/925/927/1062</topic><topic>Anisotropy</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>multidisciplinary</topic><topic>Oscillators</topic><topic>Probability</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Standard deviation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hang, Jinting</creatorcontrib><creatorcontrib>Hahn, Christian</creatorcontrib><creatorcontrib>Statuto, Nahuel</creatorcontrib><creatorcontrib>Macià, Ferran</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hang, Jinting</au><au>Hahn, Christian</au><au>Statuto, Nahuel</au><au>Macià, Ferran</au><au>Kent, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and annihilation time of magnetic droplet solitons</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>6847</spage><epage>6</epage><pages>6847-6</pages><artnum>6847</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their creation and there is now clear experimental evidence for their formation, including direct images obtained with scanning x-ray transmission microscopy. Interest in magnetic droplets is associated with their unique magnetic dynamics that can lead to new types of high frequency nanometer scale oscillators of interest for information processing, including in neuromorphic computing. However, there are no direct measurements of the time required to nucleate droplet solitons or their lifetime–experiments to date only probe their steady-state characteristics, their response to dc spin-currents. Here we determine the timescales for droplet annihilation and generation using current pulses. Annihilation occurs in a few nanoseconds while generation can take several nanoseconds to a microsecond depending on the pulse amplitude. Micromagnetic simulations show that there is an incubation time for droplet generation that depends sensitively on the initial magnetic state of the nanocontact. An understanding of these processes is essential to utilizing the unique characteristics of magnetic droplet solitons oscillators, including their high frequency, tunable and hysteretic response.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29717172</pmid><doi>10.1038/s41598-018-25134-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5972-4810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-05, Vol.8 (1), p.6847-6, Article 6847 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_983f445927e14947b8c9fceaf6099cc4 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1023/1026 639/925/927/1062 Anisotropy Experiments Humanities and Social Sciences Information processing multidisciplinary Oscillators Probability Science Science (multidisciplinary) Standard deviation Thin films |
title | Generation and annihilation time of magnetic droplet solitons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20annihilation%20time%20of%20magnetic%20droplet%20solitons&rft.jtitle=Scientific%20reports&rft.au=Hang,%20Jinting&rft.date=2018-05-01&rft.volume=8&rft.issue=1&rft.spage=6847&rft.epage=6&rft.pages=6847-6&rft.artnum=6847&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-25134-z&rft_dat=%3Cproquest_doaj_%3E2033292736%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e163a91cc72de20148b2c860d6cd9cffd467258a864f09a9ca1a1d01c81a1d293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2033292736&rft_id=info:pmid/29717172&rfr_iscdi=true |