Loading…
Modeling the natural history of Pelizaeus–Merzbacher disease
Abstract Major gaps in our understanding of the leukodystrophies result from their rarity and the lack of tissue for the interdisciplinary studies required to extend our knowledge of the pathophysiology of the diseases. This study details the natural evolution of changes in the CNS of the shaking pu...
Saved in:
Published in: | Neurobiology of disease 2015-03, Vol.75, p.115-130 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Major gaps in our understanding of the leukodystrophies result from their rarity and the lack of tissue for the interdisciplinary studies required to extend our knowledge of the pathophysiology of the diseases. This study details the natural evolution of changes in the CNS of the shaking pup ( shp ), a model of the classical form of the X-linked disorder Pelizaeus–Merzbacher disease, in particular in glia, myelin, and axons, which is likely representative of what occurs over time in the human disease. The mutation in the proteolipid protein gene, PLP1 , leads to a delay in differentiation, increased cell death, and a marked distension of the rough endoplasmic reticulum in oligodendrocytes. However, over time, more oligodendrocytes differentiate and survive in the spinal cord leading to an almost total recovery of myelination, In contrast, the brain remains persistently hypomyelinated. These data suggest that shp oligodendrocytes may be more functional than previously realized and that their early recruitment could have therapeutic value. |
---|---|
ISSN: | 0969-9961 1095-953X |
DOI: | 10.1016/j.nbd.2014.12.023 |