Loading…
Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis
Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until...
Saved in:
Published in: | Microorganisms (Basel) 2023-10, Vol.11 (10), p.2533 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953 |
container_end_page | |
container_issue | 10 |
container_start_page | 2533 |
container_title | Microorganisms (Basel) |
container_volume | 11 |
creator | Mock, Maximilian Peter Ochi, Rayen Bieringer, Maria Bieringer, Tim Brotsack, Raimund Leyer, Stephan |
description | Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes. |
doi_str_mv | 10.3390/microorganisms11102533 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_986edfae9af748b8a0ddbaafb55a1b45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_986edfae9af748b8a0ddbaafb55a1b45</doaj_id><sourcerecordid>2883585316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953</originalsourceid><addsrcrecordid>eNptkt9rFDEQxxdRbKn9F2TBF1_O5vcmT1IOq4WKIuprnCSzdzl2N2eyK_S_N9c7xIp5yTDznQ_Dd6ZpXlLyhnNDrsboc0p5A1MsY6GUEiY5f9KcM9KpFVOke_pXfNZclrIj9RnKtaTPmzPeaSOooefNj3Ua95BjSVOb-vZ7DdNS2i8YFh-nTXu9wWkubZ9y-xHnLUzYfs6pFudYO9z9KZvmLeYxOfAz5naE7JZcO0ssL5pnPQwFL0__RfPt5t3X9YfV3af3t-vru5UXWs0rwxUw7LkzAYmW4DQHFZiTArkMyLQ3wTOKwjhDOi48oYwIqQkqIToj-UVze-SGBDu7z7EOcW8TRPuQqG5ZyHP0A1qjFYYe0EDfCe00kBAcQO-kBOrEgfX2yNovbsTgqwUZhkfQx5Upbu0m_bKUKKJ1dyC8PhFy-rlgme0Yi8dhqAZWfy3TmkstOVVV-uof6S4teapeHVRMGm0UqSp1VNXNl5Kx_zMNJfZwFPb_R8F_AysSr6I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882598960</pqid></control><display><type>article</type><title>Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Mock, Maximilian Peter ; Ochi, Rayen ; Bieringer, Maria ; Bieringer, Tim ; Brotsack, Raimund ; Leyer, Stephan</creator><creatorcontrib>Mock, Maximilian Peter ; Ochi, Rayen ; Bieringer, Maria ; Bieringer, Tim ; Brotsack, Raimund ; Leyer, Stephan</creatorcontrib><description>Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.</description><identifier>ISSN: 2076-2607</identifier><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms11102533</identifier><identifier>PMID: 37894191</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; anaerobic media ; Archaea ; Biogas ; biological methanation ; Carbon dioxide ; Chemicals ; Culture media ; Dithionite ; Emissions ; Experiments ; Gases ; Hydrogen ; L-cysteine-HCl ; Methanation ; Methane ; Methanogenic archaea ; Methanothermobacter ; Microbiology ; Nutrients ; Organisms ; Oxidation ; Reagents ; reducing agent ; Reducing agents ; Sodium ; Sodium dithionite ; Sodium sulfide ; Stainless steel ; Toxicity ; Trace elements</subject><ispartof>Microorganisms (Basel), 2023-10, Vol.11 (10), p.2533</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953</citedby><cites>FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953</cites><orcidid>0000-0001-6455-2398 ; 0000-0002-2076-6316 ; 0000-0002-0263-7609 ; 0000-0001-9410-203X ; 0000-0003-4893-397X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882598960/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882598960?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Mock, Maximilian Peter</creatorcontrib><creatorcontrib>Ochi, Rayen</creatorcontrib><creatorcontrib>Bieringer, Maria</creatorcontrib><creatorcontrib>Bieringer, Tim</creatorcontrib><creatorcontrib>Brotsack, Raimund</creatorcontrib><creatorcontrib>Leyer, Stephan</creatorcontrib><title>Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis</title><title>Microorganisms (Basel)</title><description>Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.</description><subject>Alternative energy sources</subject><subject>anaerobic media</subject><subject>Archaea</subject><subject>Biogas</subject><subject>biological methanation</subject><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Culture media</subject><subject>Dithionite</subject><subject>Emissions</subject><subject>Experiments</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>L-cysteine-HCl</subject><subject>Methanation</subject><subject>Methane</subject><subject>Methanogenic archaea</subject><subject>Methanothermobacter</subject><subject>Microbiology</subject><subject>Nutrients</subject><subject>Organisms</subject><subject>Oxidation</subject><subject>Reagents</subject><subject>reducing agent</subject><subject>Reducing agents</subject><subject>Sodium</subject><subject>Sodium dithionite</subject><subject>Sodium sulfide</subject><subject>Stainless steel</subject><subject>Toxicity</subject><subject>Trace elements</subject><issn>2076-2607</issn><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9rFDEQxxdRbKn9F2TBF1_O5vcmT1IOq4WKIuprnCSzdzl2N2eyK_S_N9c7xIp5yTDznQ_Dd6ZpXlLyhnNDrsboc0p5A1MsY6GUEiY5f9KcM9KpFVOke_pXfNZclrIj9RnKtaTPmzPeaSOooefNj3Ua95BjSVOb-vZ7DdNS2i8YFh-nTXu9wWkubZ9y-xHnLUzYfs6pFudYO9z9KZvmLeYxOfAz5naE7JZcO0ssL5pnPQwFL0__RfPt5t3X9YfV3af3t-vru5UXWs0rwxUw7LkzAYmW4DQHFZiTArkMyLQ3wTOKwjhDOi48oYwIqQkqIToj-UVze-SGBDu7z7EOcW8TRPuQqG5ZyHP0A1qjFYYe0EDfCe00kBAcQO-kBOrEgfX2yNovbsTgqwUZhkfQx5Upbu0m_bKUKKJ1dyC8PhFy-rlgme0Yi8dhqAZWfy3TmkstOVVV-uof6S4teapeHVRMGm0UqSp1VNXNl5Kx_zMNJfZwFPb_R8F_AysSr6I</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Mock, Maximilian Peter</creator><creator>Ochi, Rayen</creator><creator>Bieringer, Maria</creator><creator>Bieringer, Tim</creator><creator>Brotsack, Raimund</creator><creator>Leyer, Stephan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6455-2398</orcidid><orcidid>https://orcid.org/0000-0002-2076-6316</orcidid><orcidid>https://orcid.org/0000-0002-0263-7609</orcidid><orcidid>https://orcid.org/0000-0001-9410-203X</orcidid><orcidid>https://orcid.org/0000-0003-4893-397X</orcidid></search><sort><creationdate>20231010</creationdate><title>Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis</title><author>Mock, Maximilian Peter ; Ochi, Rayen ; Bieringer, Maria ; Bieringer, Tim ; Brotsack, Raimund ; Leyer, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>anaerobic media</topic><topic>Archaea</topic><topic>Biogas</topic><topic>biological methanation</topic><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Culture media</topic><topic>Dithionite</topic><topic>Emissions</topic><topic>Experiments</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>L-cysteine-HCl</topic><topic>Methanation</topic><topic>Methane</topic><topic>Methanogenic archaea</topic><topic>Methanothermobacter</topic><topic>Microbiology</topic><topic>Nutrients</topic><topic>Organisms</topic><topic>Oxidation</topic><topic>Reagents</topic><topic>reducing agent</topic><topic>Reducing agents</topic><topic>Sodium</topic><topic>Sodium dithionite</topic><topic>Sodium sulfide</topic><topic>Stainless steel</topic><topic>Toxicity</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mock, Maximilian Peter</creatorcontrib><creatorcontrib>Ochi, Rayen</creatorcontrib><creatorcontrib>Bieringer, Maria</creatorcontrib><creatorcontrib>Bieringer, Tim</creatorcontrib><creatorcontrib>Brotsack, Raimund</creatorcontrib><creatorcontrib>Leyer, Stephan</creatorcontrib><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mock, Maximilian Peter</au><au>Ochi, Rayen</au><au>Bieringer, Maria</au><au>Bieringer, Tim</au><au>Brotsack, Raimund</au><au>Leyer, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis</atitle><jtitle>Microorganisms (Basel)</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><spage>2533</spage><pages>2533-</pages><issn>2076-2607</issn><eissn>2076-2607</eissn><abstract>Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation–reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37894191</pmid><doi>10.3390/microorganisms11102533</doi><orcidid>https://orcid.org/0000-0001-6455-2398</orcidid><orcidid>https://orcid.org/0000-0002-2076-6316</orcidid><orcidid>https://orcid.org/0000-0002-0263-7609</orcidid><orcidid>https://orcid.org/0000-0001-9410-203X</orcidid><orcidid>https://orcid.org/0000-0003-4893-397X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-2607 |
ispartof | Microorganisms (Basel), 2023-10, Vol.11 (10), p.2533 |
issn | 2076-2607 2076-2607 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_986edfae9af748b8a0ddbaafb55a1b45 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Alternative energy sources anaerobic media Archaea Biogas biological methanation Carbon dioxide Chemicals Culture media Dithionite Emissions Experiments Gases Hydrogen L-cysteine-HCl Methanation Methane Methanogenic archaea Methanothermobacter Microbiology Nutrients Organisms Oxidation Reagents reducing agent Reducing agents Sodium Sodium dithionite Sodium sulfide Stainless steel Toxicity Trace elements |
title | Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Various%20Reducing%20Agents%20for%20Methane%20Production%20by%20Methanothermobacter%20marburgensis&rft.jtitle=Microorganisms%20(Basel)&rft.au=Mock,%20Maximilian%20Peter&rft.date=2023-10-10&rft.volume=11&rft.issue=10&rft.spage=2533&rft.pages=2533-&rft.issn=2076-2607&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms11102533&rft_dat=%3Cproquest_doaj_%3E2883585316%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-936a2ef3b9de085ab83a6d2b54e35de28c9dc21e49b90734c01204580e6447953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882598960&rft_id=info:pmid/37894191&rfr_iscdi=true |