Loading…
Suppressed ion-scale turbulence in a hot high-β plasma
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving h...
Saved in:
Published in: | Nature communications 2016-12, Vol.7 (1), p.13860-13860, Article 13860 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3 |
container_end_page | 13860 |
container_issue | 1 |
container_start_page | 13860 |
container_title | Nature communications |
container_volume | 7 |
creator | Schmitz, L. Fulton, D. P. Ruskov, E. Lau, C. Deng, B. H. Tajima, T. Binderbauer, M. W. Holod, I. Lin, Z. Gota, H. Tuszewski, M. Dettrick, S. A. Steinhauer, L. C. |
description | An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow. |
doi_str_mv | 10.1038/ncomms13860 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_987293ec899d441a88af4c42f936976c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_987293ec899d441a88af4c42f936976c</doaj_id><sourcerecordid>1851297951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</originalsourceid><addsrcrecordid>eNptkc1q1kAUhoNYbGm7ci_BlaDR-cv8bAQpVgsFF-p6mJycfJmPZCbOJEJvqxfiNZk2tXwFZ3Nmznl45sBbFC8peU8J1x8CxHHMlGtJnhUnjAhaUcX484P7cXGe856shxuqhXhRHDO9vqSqTwr1fZmmhDljW_oYqgxuwHJeUrMMGABLH0pX9nEue7_rqz-35TS4PLqz4qhzQ8bzh3pa_Lz8_OPia3X97cvVxafrCmpK50oYbYDXgrRSGMepA8VExxwqwpgTGlohJbJO8qatAaWoHaGqgYY70jay5afF1eZto9vbKfnRpRsbnbf3jZh21qXZw4DWaMUMR9DGtEJQp7XrBAjWGS6NkrC6Pm6uaWlGbAHDnNzwRPp0Enxvd_G3ralWqqar4PUmiHn2NoOfEXqIISDMlgptmK5X6M3DLyn-WjDPdvQZcBhcwLhkS3VNmVHm3vd2QyHFnBN2j7tQYu_itQfxrvSrw_Uf2X9hrsC7DcjrKOww2X1cUljj-a_vL08tr5I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851297951</pqid></control><display><type>article</type><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C.</creator><creatorcontrib>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms13860</identifier><identifier>PMID: 28000675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960/1136 ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-12, Vol.7 (1), p.13860-13860, Article 13860</ispartof><rights>The Author(s) 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</citedby><cites>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187751/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187751/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28000675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1489285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitz, L.</creatorcontrib><creatorcontrib>Fulton, D. P.</creatorcontrib><creatorcontrib>Ruskov, E.</creatorcontrib><creatorcontrib>Lau, C.</creatorcontrib><creatorcontrib>Deng, B. H.</creatorcontrib><creatorcontrib>Tajima, T.</creatorcontrib><creatorcontrib>Binderbauer, M. W.</creatorcontrib><creatorcontrib>Holod, I.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Gota, H.</creatorcontrib><creatorcontrib>Tuszewski, M.</creatorcontrib><creatorcontrib>Dettrick, S. A.</creatorcontrib><creatorcontrib>Steinhauer, L. C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</description><subject>639/766/1960/1136</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc1q1kAUhoNYbGm7ci_BlaDR-cv8bAQpVgsFF-p6mJycfJmPZCbOJEJvqxfiNZk2tXwFZ3Nmznl45sBbFC8peU8J1x8CxHHMlGtJnhUnjAhaUcX484P7cXGe856shxuqhXhRHDO9vqSqTwr1fZmmhDljW_oYqgxuwHJeUrMMGABLH0pX9nEue7_rqz-35TS4PLqz4qhzQ8bzh3pa_Lz8_OPia3X97cvVxafrCmpK50oYbYDXgrRSGMepA8VExxwqwpgTGlohJbJO8qatAaWoHaGqgYY70jay5afF1eZto9vbKfnRpRsbnbf3jZh21qXZw4DWaMUMR9DGtEJQp7XrBAjWGS6NkrC6Pm6uaWlGbAHDnNzwRPp0Enxvd_G3ralWqqar4PUmiHn2NoOfEXqIISDMlgptmK5X6M3DLyn-WjDPdvQZcBhcwLhkS3VNmVHm3vd2QyHFnBN2j7tQYu_itQfxrvSrw_Uf2X9hrsC7DcjrKOww2X1cUljj-a_vL08tr5I</recordid><startdate>20161221</startdate><enddate>20161221</enddate><creator>Schmitz, L.</creator><creator>Fulton, D. P.</creator><creator>Ruskov, E.</creator><creator>Lau, C.</creator><creator>Deng, B. H.</creator><creator>Tajima, T.</creator><creator>Binderbauer, M. W.</creator><creator>Holod, I.</creator><creator>Lin, Z.</creator><creator>Gota, H.</creator><creator>Tuszewski, M.</creator><creator>Dettrick, S. A.</creator><creator>Steinhauer, L. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161221</creationdate><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><author>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/1960/1136</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, L.</creatorcontrib><creatorcontrib>Fulton, D. P.</creatorcontrib><creatorcontrib>Ruskov, E.</creatorcontrib><creatorcontrib>Lau, C.</creatorcontrib><creatorcontrib>Deng, B. H.</creatorcontrib><creatorcontrib>Tajima, T.</creatorcontrib><creatorcontrib>Binderbauer, M. W.</creatorcontrib><creatorcontrib>Holod, I.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Gota, H.</creatorcontrib><creatorcontrib>Tuszewski, M.</creatorcontrib><creatorcontrib>Dettrick, S. A.</creatorcontrib><creatorcontrib>Steinhauer, L. C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, L.</au><au>Fulton, D. P.</au><au>Ruskov, E.</au><au>Lau, C.</au><au>Deng, B. H.</au><au>Tajima, T.</au><au>Binderbauer, M. W.</au><au>Holod, I.</au><au>Lin, Z.</au><au>Gota, H.</au><au>Tuszewski, M.</au><au>Dettrick, S. A.</au><au>Steinhauer, L. C.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressed ion-scale turbulence in a hot high-β plasma</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-12-21</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>13860</spage><epage>13860</epage><pages>13860-13860</pages><artnum>13860</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28000675</pmid><doi>10.1038/ncomms13860</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-12, Vol.7 (1), p.13860-13860, Article 13860 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_987293ec899d441a88af4c42f936976c |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/1960/1136 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Suppressed ion-scale turbulence in a hot high-β plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressed%20ion-scale%20turbulence%20in%20a%20hot%20high-%CE%B2%20plasma&rft.jtitle=Nature%20communications&rft.au=Schmitz,%20L.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-12-21&rft.volume=7&rft.issue=1&rft.spage=13860&rft.epage=13860&rft.pages=13860-13860&rft.artnum=13860&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms13860&rft_dat=%3Cproquest_doaj_%3E1851297951%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851297951&rft_id=info:pmid/28000675&rfr_iscdi=true |