Loading…

Suppressed ion-scale turbulence in a hot high-β plasma

An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving h...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-12, Vol.7 (1), p.13860-13860, Article 13860
Main Authors: Schmitz, L., Fulton, D. P., Ruskov, E., Lau, C., Deng, B. H., Tajima, T., Binderbauer, M. W., Holod, I., Lin, Z., Gota, H., Tuszewski, M., Dettrick, S. A., Steinhauer, L. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3
cites cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3
container_end_page 13860
container_issue 1
container_start_page 13860
container_title Nature communications
container_volume 7
creator Schmitz, L.
Fulton, D. P.
Ruskov, E.
Lau, C.
Deng, B. H.
Tajima, T.
Binderbauer, M. W.
Holod, I.
Lin, Z.
Gota, H.
Tuszewski, M.
Dettrick, S. A.
Steinhauer, L. C.
description An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.
doi_str_mv 10.1038/ncomms13860
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_987293ec899d441a88af4c42f936976c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_987293ec899d441a88af4c42f936976c</doaj_id><sourcerecordid>1851297951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</originalsourceid><addsrcrecordid>eNptkc1q1kAUhoNYbGm7ci_BlaDR-cv8bAQpVgsFF-p6mJycfJmPZCbOJEJvqxfiNZk2tXwFZ3Nmznl45sBbFC8peU8J1x8CxHHMlGtJnhUnjAhaUcX484P7cXGe856shxuqhXhRHDO9vqSqTwr1fZmmhDljW_oYqgxuwHJeUrMMGABLH0pX9nEue7_rqz-35TS4PLqz4qhzQ8bzh3pa_Lz8_OPia3X97cvVxafrCmpK50oYbYDXgrRSGMepA8VExxwqwpgTGlohJbJO8qatAaWoHaGqgYY70jay5afF1eZto9vbKfnRpRsbnbf3jZh21qXZw4DWaMUMR9DGtEJQp7XrBAjWGS6NkrC6Pm6uaWlGbAHDnNzwRPp0Enxvd_G3ralWqqar4PUmiHn2NoOfEXqIISDMlgptmK5X6M3DLyn-WjDPdvQZcBhcwLhkS3VNmVHm3vd2QyHFnBN2j7tQYu_itQfxrvSrw_Uf2X9hrsC7DcjrKOww2X1cUljj-a_vL08tr5I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851297951</pqid></control><display><type>article</type><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C.</creator><creatorcontrib>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms13860</identifier><identifier>PMID: 28000675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960/1136 ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-12, Vol.7 (1), p.13860-13860, Article 13860</ispartof><rights>The Author(s) 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</citedby><cites>FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187751/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5187751/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28000675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1489285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitz, L.</creatorcontrib><creatorcontrib>Fulton, D. P.</creatorcontrib><creatorcontrib>Ruskov, E.</creatorcontrib><creatorcontrib>Lau, C.</creatorcontrib><creatorcontrib>Deng, B. H.</creatorcontrib><creatorcontrib>Tajima, T.</creatorcontrib><creatorcontrib>Binderbauer, M. W.</creatorcontrib><creatorcontrib>Holod, I.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Gota, H.</creatorcontrib><creatorcontrib>Tuszewski, M.</creatorcontrib><creatorcontrib>Dettrick, S. A.</creatorcontrib><creatorcontrib>Steinhauer, L. C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</description><subject>639/766/1960/1136</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkc1q1kAUhoNYbGm7ci_BlaDR-cv8bAQpVgsFF-p6mJycfJmPZCbOJEJvqxfiNZk2tXwFZ3Nmznl45sBbFC8peU8J1x8CxHHMlGtJnhUnjAhaUcX484P7cXGe856shxuqhXhRHDO9vqSqTwr1fZmmhDljW_oYqgxuwHJeUrMMGABLH0pX9nEue7_rqz-35TS4PLqz4qhzQ8bzh3pa_Lz8_OPia3X97cvVxafrCmpK50oYbYDXgrRSGMepA8VExxwqwpgTGlohJbJO8qatAaWoHaGqgYY70jay5afF1eZto9vbKfnRpRsbnbf3jZh21qXZw4DWaMUMR9DGtEJQp7XrBAjWGS6NkrC6Pm6uaWlGbAHDnNzwRPp0Enxvd_G3ralWqqar4PUmiHn2NoOfEXqIISDMlgptmK5X6M3DLyn-WjDPdvQZcBhcwLhkS3VNmVHm3vd2QyHFnBN2j7tQYu_itQfxrvSrw_Uf2X9hrsC7DcjrKOww2X1cUljj-a_vL08tr5I</recordid><startdate>20161221</startdate><enddate>20161221</enddate><creator>Schmitz, L.</creator><creator>Fulton, D. P.</creator><creator>Ruskov, E.</creator><creator>Lau, C.</creator><creator>Deng, B. H.</creator><creator>Tajima, T.</creator><creator>Binderbauer, M. W.</creator><creator>Holod, I.</creator><creator>Lin, Z.</creator><creator>Gota, H.</creator><creator>Tuszewski, M.</creator><creator>Dettrick, S. A.</creator><creator>Steinhauer, L. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161221</creationdate><title>Suppressed ion-scale turbulence in a hot high-β plasma</title><author>Schmitz, L. ; Fulton, D. P. ; Ruskov, E. ; Lau, C. ; Deng, B. H. ; Tajima, T. ; Binderbauer, M. W. ; Holod, I. ; Lin, Z. ; Gota, H. ; Tuszewski, M. ; Dettrick, S. A. ; Steinhauer, L. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/1960/1136</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, L.</creatorcontrib><creatorcontrib>Fulton, D. P.</creatorcontrib><creatorcontrib>Ruskov, E.</creatorcontrib><creatorcontrib>Lau, C.</creatorcontrib><creatorcontrib>Deng, B. H.</creatorcontrib><creatorcontrib>Tajima, T.</creatorcontrib><creatorcontrib>Binderbauer, M. W.</creatorcontrib><creatorcontrib>Holod, I.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Gota, H.</creatorcontrib><creatorcontrib>Tuszewski, M.</creatorcontrib><creatorcontrib>Dettrick, S. A.</creatorcontrib><creatorcontrib>Steinhauer, L. C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, L.</au><au>Fulton, D. P.</au><au>Ruskov, E.</au><au>Lau, C.</au><au>Deng, B. H.</au><au>Tajima, T.</au><au>Binderbauer, M. W.</au><au>Holod, I.</au><au>Lin, Z.</au><au>Gota, H.</au><au>Tuszewski, M.</au><au>Dettrick, S. A.</au><au>Steinhauer, L. C.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressed ion-scale turbulence in a hot high-β plasma</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-12-21</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>13860</spage><epage>13860</epage><pages>13860-13860</pages><artnum>13860</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28000675</pmid><doi>10.1038/ncomms13860</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-12, Vol.7 (1), p.13860-13860, Article 13860
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_987293ec899d441a88af4c42f936976c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/1960/1136
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Suppressed ion-scale turbulence in a hot high-β plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressed%20ion-scale%20turbulence%20in%20a%20hot%20high-%CE%B2%20plasma&rft.jtitle=Nature%20communications&rft.au=Schmitz,%20L.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-12-21&rft.volume=7&rft.issue=1&rft.spage=13860&rft.epage=13860&rft.pages=13860-13860&rft.artnum=13860&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms13860&rft_dat=%3Cproquest_doaj_%3E1851297951%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-4989c3540d649a31ac724f2ae7022a48cd466e2f63bd5ce645a017bcb3a0db6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851297951&rft_id=info:pmid/28000675&rfr_iscdi=true