Loading…

Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks

Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables larg...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2014-06, Vol.3
Main Authors: Zhao, Suwen, Sakai, Ayano, Zhang, Xinshuai, Vetting, Matthew W, Kumar, Ritesh, Hillerich, Brandan, San Francisco, Brian, Solbiati, Jose, Steves, Adam, Brown, Shoshana, Akiva, Eyal, Barber, Alan, Seidel, Ronald D, Babbitt, Patricia C, Almo, Steven C, Gerlt, John A, Jacobson, Matthew P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413
cites cdi_FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 3
creator Zhao, Suwen
Sakai, Ayano
Zhang, Xinshuai
Vetting, Matthew W
Kumar, Ritesh
Hillerich, Brandan
San Francisco, Brian
Solbiati, Jose
Steves, Adam
Brown, Shoshana
Akiva, Eyal
Barber, Alan
Seidel, Ronald D
Babbitt, Patricia C
Almo, Steven C
Gerlt, John A
Jacobson, Matthew P
description Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.
doi_str_mv 10.7554/elife.03275
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_987f7767be6744a18463d2a7fd3a79e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_987f7767be6744a18463d2a7fd3a79e8</doaj_id><sourcerecordid>1566113859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413</originalsourceid><addsrcrecordid>eNpdkstv1DAQhyMEolXpiTuK4IKEttiJH_EFqap4VFoJDiBxs_yYJF4Su9jOou1fj3e3VC32wZ6Zn755aKrqJUYXnFLyHibXwwVqG06fVKcNomiFOvLz6YP_SXWe0gaVw0nXYfG8OmmI6BBHzWm1_RbBOpNd8LXytjajispkiO5WHZyhr8Hf7uZimbpE3NZlB6keFmfB1npXJ_i9gDdQJze7SUWXdwfUAD7MUHtww6hDHEOwxch_QvyVXlTPejUlOL97z6ofnz5-v_qyWn_9fH11uV4ZSlBewb7gTtvegKVC28ZgrbXpgDHBjKUUekoUM0IgaCwygmGqrEWtbpGwBLdn1fWRa4PayJvoZhV3MignD44QB6li6WwCKTrec864BsYJUbgjrLWN4r1tFRfQFdaHI-tm0TNYAz5HNT2CPo54N8ohbCXBuBWCFcDrIyCk7GQyLoMZTfAeTJYYi5KcFtHbuywxlLmmLGeXDEyT8hCWJDFlrPA6Kor0zX_STViiL_OUWDBGy-X7rO-OKhNDShH6-4oxkvsdkrAuOyQPO1TUrx42ea_9tzHtXyWBxbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966565676</pqid></control><display><type>article</type><title>Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks</title><source>PubMed Central(OpenAccess)</source><source>ProQuest Publicly Available Content database</source><creator>Zhao, Suwen ; Sakai, Ayano ; Zhang, Xinshuai ; Vetting, Matthew W ; Kumar, Ritesh ; Hillerich, Brandan ; San Francisco, Brian ; Solbiati, Jose ; Steves, Adam ; Brown, Shoshana ; Akiva, Eyal ; Barber, Alan ; Seidel, Ronald D ; Babbitt, Patricia C ; Almo, Steven C ; Gerlt, John A ; Jacobson, Matthew P</creator><creatorcontrib>Zhao, Suwen ; Sakai, Ayano ; Zhang, Xinshuai ; Vetting, Matthew W ; Kumar, Ritesh ; Hillerich, Brandan ; San Francisco, Brian ; Solbiati, Jose ; Steves, Adam ; Brown, Shoshana ; Akiva, Eyal ; Barber, Alan ; Seidel, Ronald D ; Babbitt, Patricia C ; Almo, Steven C ; Gerlt, John A ; Jacobson, Matthew P</creatorcontrib><description>Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.03275</identifier><identifier>PMID: 24980702</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Algorithms ; Amino Acid Isomerases - chemistry ; Biochemistry ; Computational Biology - methods ; Crystallography, X-Ray ; Dehydrogenases ; Enzymatic activity ; Enzymes ; functional assignment ; Gene clusters ; Gene expression ; genome neighborhood network ; Genome, Bacterial ; Genomes ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Molecular Conformation ; Molecular Sequence Data ; Multigene Family ; Neighborhoods ; Nucleotide sequence ; Operons ; Plasmids - metabolism ; Proline racemase ; Protein families ; Proteins ; RNA - chemistry ; sequence similarity network ; Spectrometry, Mass, Electrospray Ionization ; Transcription, Genetic</subject><ispartof>eLife, 2014-06, Vol.3</ispartof><rights>Copyright © 2014, Zhao et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014, Zhao et al 2014 Zhao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413</citedby><cites>FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1966565676/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1966565676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24980702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1197675$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Suwen</creatorcontrib><creatorcontrib>Sakai, Ayano</creatorcontrib><creatorcontrib>Zhang, Xinshuai</creatorcontrib><creatorcontrib>Vetting, Matthew W</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Hillerich, Brandan</creatorcontrib><creatorcontrib>San Francisco, Brian</creatorcontrib><creatorcontrib>Solbiati, Jose</creatorcontrib><creatorcontrib>Steves, Adam</creatorcontrib><creatorcontrib>Brown, Shoshana</creatorcontrib><creatorcontrib>Akiva, Eyal</creatorcontrib><creatorcontrib>Barber, Alan</creatorcontrib><creatorcontrib>Seidel, Ronald D</creatorcontrib><creatorcontrib>Babbitt, Patricia C</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Gerlt, John A</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><title>Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks</title><title>eLife</title><addtitle>Elife</addtitle><description>Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.</description><subject>Algorithms</subject><subject>Amino Acid Isomerases - chemistry</subject><subject>Biochemistry</subject><subject>Computational Biology - methods</subject><subject>Crystallography, X-Ray</subject><subject>Dehydrogenases</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>functional assignment</subject><subject>Gene clusters</subject><subject>Gene expression</subject><subject>genome neighborhood network</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mass Spectrometry</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Neighborhoods</subject><subject>Nucleotide sequence</subject><subject>Operons</subject><subject>Plasmids - metabolism</subject><subject>Proline racemase</subject><subject>Protein families</subject><subject>Proteins</subject><subject>RNA - chemistry</subject><subject>sequence similarity network</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Transcription, Genetic</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstv1DAQhyMEolXpiTuK4IKEttiJH_EFqap4VFoJDiBxs_yYJF4Su9jOou1fj3e3VC32wZ6Zn755aKrqJUYXnFLyHibXwwVqG06fVKcNomiFOvLz6YP_SXWe0gaVw0nXYfG8OmmI6BBHzWm1_RbBOpNd8LXytjajispkiO5WHZyhr8Hf7uZimbpE3NZlB6keFmfB1npXJ_i9gDdQJze7SUWXdwfUAD7MUHtww6hDHEOwxch_QvyVXlTPejUlOL97z6ofnz5-v_qyWn_9fH11uV4ZSlBewb7gTtvegKVC28ZgrbXpgDHBjKUUekoUM0IgaCwygmGqrEWtbpGwBLdn1fWRa4PayJvoZhV3MignD44QB6li6WwCKTrec864BsYJUbgjrLWN4r1tFRfQFdaHI-tm0TNYAz5HNT2CPo54N8ohbCXBuBWCFcDrIyCk7GQyLoMZTfAeTJYYi5KcFtHbuywxlLmmLGeXDEyT8hCWJDFlrPA6Kor0zX_STViiL_OUWDBGy-X7rO-OKhNDShH6-4oxkvsdkrAuOyQPO1TUrx42ea_9tzHtXyWBxbg</recordid><startdate>20140630</startdate><enddate>20140630</enddate><creator>Zhao, Suwen</creator><creator>Sakai, Ayano</creator><creator>Zhang, Xinshuai</creator><creator>Vetting, Matthew W</creator><creator>Kumar, Ritesh</creator><creator>Hillerich, Brandan</creator><creator>San Francisco, Brian</creator><creator>Solbiati, Jose</creator><creator>Steves, Adam</creator><creator>Brown, Shoshana</creator><creator>Akiva, Eyal</creator><creator>Barber, Alan</creator><creator>Seidel, Ronald D</creator><creator>Babbitt, Patricia C</creator><creator>Almo, Steven C</creator><creator>Gerlt, John A</creator><creator>Jacobson, Matthew P</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140630</creationdate><title>Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks</title><author>Zhao, Suwen ; Sakai, Ayano ; Zhang, Xinshuai ; Vetting, Matthew W ; Kumar, Ritesh ; Hillerich, Brandan ; San Francisco, Brian ; Solbiati, Jose ; Steves, Adam ; Brown, Shoshana ; Akiva, Eyal ; Barber, Alan ; Seidel, Ronald D ; Babbitt, Patricia C ; Almo, Steven C ; Gerlt, John A ; Jacobson, Matthew P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Amino Acid Isomerases - chemistry</topic><topic>Biochemistry</topic><topic>Computational Biology - methods</topic><topic>Crystallography, X-Ray</topic><topic>Dehydrogenases</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>functional assignment</topic><topic>Gene clusters</topic><topic>Gene expression</topic><topic>genome neighborhood network</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mass Spectrometry</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Neighborhoods</topic><topic>Nucleotide sequence</topic><topic>Operons</topic><topic>Plasmids - metabolism</topic><topic>Proline racemase</topic><topic>Protein families</topic><topic>Proteins</topic><topic>RNA - chemistry</topic><topic>sequence similarity network</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Suwen</creatorcontrib><creatorcontrib>Sakai, Ayano</creatorcontrib><creatorcontrib>Zhang, Xinshuai</creatorcontrib><creatorcontrib>Vetting, Matthew W</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Hillerich, Brandan</creatorcontrib><creatorcontrib>San Francisco, Brian</creatorcontrib><creatorcontrib>Solbiati, Jose</creatorcontrib><creatorcontrib>Steves, Adam</creatorcontrib><creatorcontrib>Brown, Shoshana</creatorcontrib><creatorcontrib>Akiva, Eyal</creatorcontrib><creatorcontrib>Barber, Alan</creatorcontrib><creatorcontrib>Seidel, Ronald D</creatorcontrib><creatorcontrib>Babbitt, Patricia C</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Gerlt, John A</creatorcontrib><creatorcontrib>Jacobson, Matthew P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Suwen</au><au>Sakai, Ayano</au><au>Zhang, Xinshuai</au><au>Vetting, Matthew W</au><au>Kumar, Ritesh</au><au>Hillerich, Brandan</au><au>San Francisco, Brian</au><au>Solbiati, Jose</au><au>Steves, Adam</au><au>Brown, Shoshana</au><au>Akiva, Eyal</au><au>Barber, Alan</au><au>Seidel, Ronald D</au><au>Babbitt, Patricia C</au><au>Almo, Steven C</au><au>Gerlt, John A</au><au>Jacobson, Matthew P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2014-06-30</date><risdate>2014</risdate><volume>3</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>24980702</pmid><doi>10.7554/elife.03275</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2014-06, Vol.3
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_987f7767be6744a18463d2a7fd3a79e8
source PubMed Central(OpenAccess); ProQuest Publicly Available Content database
subjects Algorithms
Amino Acid Isomerases - chemistry
Biochemistry
Computational Biology - methods
Crystallography, X-Ray
Dehydrogenases
Enzymatic activity
Enzymes
functional assignment
Gene clusters
Gene expression
genome neighborhood network
Genome, Bacterial
Genomes
Magnetic Resonance Spectroscopy
Mass Spectrometry
Metabolic Networks and Pathways
Metabolic pathways
Metabolism
Molecular Conformation
Molecular Sequence Data
Multigene Family
Neighborhoods
Nucleotide sequence
Operons
Plasmids - metabolism
Proline racemase
Protein families
Proteins
RNA - chemistry
sequence similarity network
Spectrometry, Mass, Electrospray Ionization
Transcription, Genetic
title Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20characterization%20of%20enzymatic%20activities%20guided%20by%20sequence%20similarity%20and%20genome%20neighborhood%20networks&rft.jtitle=eLife&rft.au=Zhao,%20Suwen&rft.date=2014-06-30&rft.volume=3&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.03275&rft_dat=%3Cproquest_doaj_%3E1566113859%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e48818bdfced59bd2c1bbbc8e6696cd55ef54a6c990e2d0c9615add03b309d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1966565676&rft_id=info:pmid/24980702&rfr_iscdi=true