Loading…

Investigation of Different Free Image Analysis Software for High-Throughput Droplet Detection

Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis tool. For droplet analysis, researchers often use imag...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-09, Vol.6 (35), p.22625-22634
Main Authors: Sanka, Immanuel, Bartkova, Simona, Pata, Pille, Smolander, Olli-Pekka, Scheler, Ott
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis tool. For droplet analysis, researchers often use image-based detection techniques. Unfortunately, the analysis of images may require specific tools or programming skills to produce the expected results. In order to address the issue, we explore the potential use of standalone freely available software to perform image-based droplet detection. We select the four most popular software and classify them into rule-based and machine learning-based types after assessing the software’s modules. We test and evaluate the software’s (i) ability to detect droplets, (ii) accuracy and precision, and (iii) overall components and supporting material. In our experimental setting, we find that the rule-based type of software is better suited for image-based droplet detection. The rule-based type of software also has a simpler workflow or pipeline, especially aimed for non-experienced users. In our case, CellProfiler (CP) offers the most user-friendly experience for both single image and batch processing analyses.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c02664