Loading…

Tunable macroscale structural superlubricity in two-layer graphene via strain engineering

Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-03, Vol.11 (1), p.1595-1595, Article 1595
Main Authors: Androulidakis, Charalampos, Koukaras, Emmanuel N., Paterakis, George, Trakakis, George, Galiotis, Costas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93
cites cdi_FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93
container_end_page 1595
container_issue 1
container_start_page 1595
container_title Nature communications
container_volume 11
creator Androulidakis, Charalampos
Koukaras, Emmanuel N.
Paterakis, George
Trakakis, George
Galiotis, Costas
description Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and chemical vapour deposition. By measuring the shifts of Raman peaks under strain we estimate the values of frictional interlayer shear stress (ILSS) in the superlubricity regime (mm scale) under ambient conditions. The random incommensurate stacking, the presence of wrinkles and the mismatch in the lattice constant between two graphene layers induced by the tensile strain differential are considered responsible for the facile shearing at the macroscale. Furthermore, molecular dynamic simulations show that the stick-slip behaviour does not hold for incommensurate chiral shearing directions for which the ILSS decreases substantially, supporting the experimental observations. Our results pave the way for overcoming several limitations in achieving macroscale superlubricity using graphene. Superlubricity in macro-scale graphitic samples is hampered by commensurate stacking domains that prevent facile sliding between adjacent graphene layers. Here, the authors show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and CVD upon the imposition of a tensile stress.
doi_str_mv 10.1038/s41467-020-15446-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98b87df96404472ead34819619465f34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98b87df96404472ead34819619465f34</doaj_id><sourcerecordid>2383786646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93</originalsourceid><addsrcrecordid>eNp9Uk1v1TAQjBCIVqV_gAOKxIVLij82tnNBQhXQSpW4lAMna-NsUj_lJcFOWr1_j9OU0nLAF6-8s7O7nsmyt5ydcSbNxwgclC6YYAUvAVRxeJEdCwa84FrIl0_io-w0xh1LR1bcALzOjqQQgkvGj7Of18uAdU_5Hl0Yo8MUxjksbl4C9nlcJgr9Ugfv_HzI_ZDPd2PR44FC3gWcbmig_NbjWoMpS0PnB6Lgh-5N9qrFPtLpw32S_fj65fr8orj6_u3y_PNV4Upgc0GCGyTBJLCyMW0pDLoKhIMKm9qU0tU1kmm1EkZLVSpX1a1uHNMAjgAreZJdbrzNiDs7Bb_HcLAjenv_MIbOYpi968lWpja6aSsFDEALwkaC4ZXiFaiylZC4Pm1c01LvqXE0pLX6Z6TPM4O_sd14azVnPE2XCD48EITx10JxtnsfHfU9DjQu0QppIAnDlE7Q9_9Ad-MShvRVK0pqoxSohBIbalUnBmofh-HMrkawmxFsMoK9N4I9pKJ3T9d4LPkjewLIDRCnVSoKf3v_h_Y3iFS_cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383786646</pqid></control><display><type>article</type><title>Tunable macroscale structural superlubricity in two-layer graphene via strain engineering</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Androulidakis, Charalampos ; Koukaras, Emmanuel N. ; Paterakis, George ; Trakakis, George ; Galiotis, Costas</creator><creatorcontrib>Androulidakis, Charalampos ; Koukaras, Emmanuel N. ; Paterakis, George ; Trakakis, George ; Galiotis, Costas</creatorcontrib><description>Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and chemical vapour deposition. By measuring the shifts of Raman peaks under strain we estimate the values of frictional interlayer shear stress (ILSS) in the superlubricity regime (mm scale) under ambient conditions. The random incommensurate stacking, the presence of wrinkles and the mismatch in the lattice constant between two graphene layers induced by the tensile strain differential are considered responsible for the facile shearing at the macroscale. Furthermore, molecular dynamic simulations show that the stick-slip behaviour does not hold for incommensurate chiral shearing directions for which the ILSS decreases substantially, supporting the experimental observations. Our results pave the way for overcoming several limitations in achieving macroscale superlubricity using graphene. Superlubricity in macro-scale graphitic samples is hampered by commensurate stacking domains that prevent facile sliding between adjacent graphene layers. Here, the authors show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and CVD upon the imposition of a tensile stress.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15446-y</identifier><identifier>PMID: 32221301</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/133 ; 147/3 ; 639/301/357/918 ; 639/925/918/1053 ; Chemical vapor deposition ; Domains ; Exfoliation ; Graphene ; Humanities and Social Sciences ; Interlayers ; Lattice parameters ; Molecular dynamics ; multidisciplinary ; Science ; Science (multidisciplinary) ; Shear stress ; Shearing ; Sliding ; Stacking ; Strain ; Tensile strain ; Tensile stress</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1595-1595, Article 1595</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93</citedby><cites>FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93</cites><orcidid>0000-0002-6528-5161 ; 0000-0002-5069-8334 ; 0000-0002-5264-1841 ; 0000-0003-2779-9900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383786646/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383786646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32221301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Androulidakis, Charalampos</creatorcontrib><creatorcontrib>Koukaras, Emmanuel N.</creatorcontrib><creatorcontrib>Paterakis, George</creatorcontrib><creatorcontrib>Trakakis, George</creatorcontrib><creatorcontrib>Galiotis, Costas</creatorcontrib><title>Tunable macroscale structural superlubricity in two-layer graphene via strain engineering</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and chemical vapour deposition. By measuring the shifts of Raman peaks under strain we estimate the values of frictional interlayer shear stress (ILSS) in the superlubricity regime (mm scale) under ambient conditions. The random incommensurate stacking, the presence of wrinkles and the mismatch in the lattice constant between two graphene layers induced by the tensile strain differential are considered responsible for the facile shearing at the macroscale. Furthermore, molecular dynamic simulations show that the stick-slip behaviour does not hold for incommensurate chiral shearing directions for which the ILSS decreases substantially, supporting the experimental observations. Our results pave the way for overcoming several limitations in achieving macroscale superlubricity using graphene. Superlubricity in macro-scale graphitic samples is hampered by commensurate stacking domains that prevent facile sliding between adjacent graphene layers. Here, the authors show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and CVD upon the imposition of a tensile stress.</description><subject>119/118</subject><subject>140/133</subject><subject>147/3</subject><subject>639/301/357/918</subject><subject>639/925/918/1053</subject><subject>Chemical vapor deposition</subject><subject>Domains</subject><subject>Exfoliation</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Interlayers</subject><subject>Lattice parameters</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Shearing</subject><subject>Sliding</subject><subject>Stacking</subject><subject>Strain</subject><subject>Tensile strain</subject><subject>Tensile stress</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1TAQjBCIVqV_gAOKxIVLij82tnNBQhXQSpW4lAMna-NsUj_lJcFOWr1_j9OU0nLAF6-8s7O7nsmyt5ydcSbNxwgclC6YYAUvAVRxeJEdCwa84FrIl0_io-w0xh1LR1bcALzOjqQQgkvGj7Of18uAdU_5Hl0Yo8MUxjksbl4C9nlcJgr9Ugfv_HzI_ZDPd2PR44FC3gWcbmig_NbjWoMpS0PnB6Lgh-5N9qrFPtLpw32S_fj65fr8orj6_u3y_PNV4Upgc0GCGyTBJLCyMW0pDLoKhIMKm9qU0tU1kmm1EkZLVSpX1a1uHNMAjgAreZJdbrzNiDs7Bb_HcLAjenv_MIbOYpi968lWpja6aSsFDEALwkaC4ZXiFaiylZC4Pm1c01LvqXE0pLX6Z6TPM4O_sd14azVnPE2XCD48EITx10JxtnsfHfU9DjQu0QppIAnDlE7Q9_9Ad-MShvRVK0pqoxSohBIbalUnBmofh-HMrkawmxFsMoK9N4I9pKJ3T9d4LPkjewLIDRCnVSoKf3v_h_Y3iFS_cw</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Androulidakis, Charalampos</creator><creator>Koukaras, Emmanuel N.</creator><creator>Paterakis, George</creator><creator>Trakakis, George</creator><creator>Galiotis, Costas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6528-5161</orcidid><orcidid>https://orcid.org/0000-0002-5069-8334</orcidid><orcidid>https://orcid.org/0000-0002-5264-1841</orcidid><orcidid>https://orcid.org/0000-0003-2779-9900</orcidid></search><sort><creationdate>20200327</creationdate><title>Tunable macroscale structural superlubricity in two-layer graphene via strain engineering</title><author>Androulidakis, Charalampos ; Koukaras, Emmanuel N. ; Paterakis, George ; Trakakis, George ; Galiotis, Costas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/133</topic><topic>147/3</topic><topic>639/301/357/918</topic><topic>639/925/918/1053</topic><topic>Chemical vapor deposition</topic><topic>Domains</topic><topic>Exfoliation</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Interlayers</topic><topic>Lattice parameters</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Shearing</topic><topic>Sliding</topic><topic>Stacking</topic><topic>Strain</topic><topic>Tensile strain</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Androulidakis, Charalampos</creatorcontrib><creatorcontrib>Koukaras, Emmanuel N.</creatorcontrib><creatorcontrib>Paterakis, George</creatorcontrib><creatorcontrib>Trakakis, George</creatorcontrib><creatorcontrib>Galiotis, Costas</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Androulidakis, Charalampos</au><au>Koukaras, Emmanuel N.</au><au>Paterakis, George</au><au>Trakakis, George</au><au>Galiotis, Costas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable macroscale structural superlubricity in two-layer graphene via strain engineering</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1595</spage><epage>1595</epage><pages>1595-1595</pages><artnum>1595</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and chemical vapour deposition. By measuring the shifts of Raman peaks under strain we estimate the values of frictional interlayer shear stress (ILSS) in the superlubricity regime (mm scale) under ambient conditions. The random incommensurate stacking, the presence of wrinkles and the mismatch in the lattice constant between two graphene layers induced by the tensile strain differential are considered responsible for the facile shearing at the macroscale. Furthermore, molecular dynamic simulations show that the stick-slip behaviour does not hold for incommensurate chiral shearing directions for which the ILSS decreases substantially, supporting the experimental observations. Our results pave the way for overcoming several limitations in achieving macroscale superlubricity using graphene. Superlubricity in macro-scale graphitic samples is hampered by commensurate stacking domains that prevent facile sliding between adjacent graphene layers. Here, the authors show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and CVD upon the imposition of a tensile stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32221301</pmid><doi>10.1038/s41467-020-15446-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6528-5161</orcidid><orcidid>https://orcid.org/0000-0002-5069-8334</orcidid><orcidid>https://orcid.org/0000-0002-5264-1841</orcidid><orcidid>https://orcid.org/0000-0003-2779-9900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-03, Vol.11 (1), p.1595-1595, Article 1595
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_98b87df96404472ead34819619465f34
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
140/133
147/3
639/301/357/918
639/925/918/1053
Chemical vapor deposition
Domains
Exfoliation
Graphene
Humanities and Social Sciences
Interlayers
Lattice parameters
Molecular dynamics
multidisciplinary
Science
Science (multidisciplinary)
Shear stress
Shearing
Sliding
Stacking
Strain
Tensile strain
Tensile stress
title Tunable macroscale structural superlubricity in two-layer graphene via strain engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20macroscale%20structural%20superlubricity%20in%20two-layer%20graphene%20via%20strain%20engineering&rft.jtitle=Nature%20communications&rft.au=Androulidakis,%20Charalampos&rft.date=2020-03-27&rft.volume=11&rft.issue=1&rft.spage=1595&rft.epage=1595&rft.pages=1595-1595&rft.artnum=1595&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15446-y&rft_dat=%3Cproquest_doaj_%3E2383786646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e218ae203405d8f528ac942c49adb853cbbae8f762873656c9bf7dc0744ce4a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383786646&rft_id=info:pmid/32221301&rfr_iscdi=true