Loading…

Polyandry blocks gene drive in a wild house mouse population

Gene drives are genetic elements that manipulate Mendelian inheritance ratios in their favour. Understanding the forces that explain drive frequency in natural populations is a long-standing focus of evolutionary research. Recently, the possibility to create artificial drive constructs to modify pes...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-11, Vol.11 (1), p.5590-5590, Article 5590
Main Authors: Manser, Andri, König, Barbara, Lindholm, Anna K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gene drives are genetic elements that manipulate Mendelian inheritance ratios in their favour. Understanding the forces that explain drive frequency in natural populations is a long-standing focus of evolutionary research. Recently, the possibility to create artificial drive constructs to modify pest populations has exacerbated our need to understand how drive spreads in natural populations. Here, we study the impact of polyandry on a well-known gene drive, called t haplotype, in an intensively monitored population of wild house mice. First, we show that house mice are highly polyandrous: 47% of 682 litters were sired by more than one male. Second, we find that drive-carrying males are particularly compromised in sperm competition, resulting in reduced reproductive success. As a result, drive frequency decreased during the 4.5 year observation period. Overall, we provide the first direct evidence that the spread of a gene drive is hampered by reproductive behaviour in a natural population. This study resolves a long-standing mystery of why t haplotypes, an example of selfish genes, have persisted at unexpectedly low frequencies in wild mouse populations. It shows that multiple mating by females, which is more common at higher mouse population densities, decreases the frequency of driving t  haplotypes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18967-8