Loading…

Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform

The detection of meningioma tumors is the most crucial task compared with other tumors because of their lower pixel intensity. Modern medical platforms require a fully automated system for meningioma detection. Hence, this study proposes a novel and highly efficient hybrid Convolutional neural netwo...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-09, Vol.13 (1), p.14522-14522, Article 14522
Main Authors: Prakash, B. V., Kannan, A. Rajiv, Santhiyakumari, N., Kumarganesh, S., Raja, D. Siva Sundhara, Hephzipah, J. Jasmine, MartinSagayam, K., Pomplun, Marc, Dang, Hien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73
cites cdi_FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73
container_end_page 14522
container_issue 1
container_start_page 14522
container_title Scientific reports
container_volume 13
creator Prakash, B. V.
Kannan, A. Rajiv
Santhiyakumari, N.
Kumarganesh, S.
Raja, D. Siva Sundhara
Hephzipah, J. Jasmine
MartinSagayam, K.
Pomplun, Marc
Dang, Hien
description The detection of meningioma tumors is the most crucial task compared with other tumors because of their lower pixel intensity. Modern medical platforms require a fully automated system for meningioma detection. Hence, this study proposes a novel and highly efficient hybrid Convolutional neural network (HCNN) classifier to distinguish meningioma brain images from non-meningioma brain images. The HCNN classification technique consists of the Ridgelet transform, feature computations, classifier module, and segmentation algorithm. Pixel stability during the decomposition process was improved by the Ridgelet transform, and the features were computed from the coefficient of the Ridgelet. These features were classified using the HCNN classification approach, and tumor pixels were detected using the segmentation algorithm. The experimental results were analyzed for meningioma tumor images by applying the proposed method to the BRATS 2019 and Nanfang dataset. The proposed HCNN-based meningioma detection system achieved 99.31% sensitivity, 99.37% specificity, and 99.24% segmentation accuracy for the BRATS 2019 dataset. The proposed HCNN technique achieved99.35% sensitivity, 99.22% specificity, and 99.04% segmentation accuracy on brain Magnetic Resonance Imaging (MRI) in the Nanfang dataset. The proposed system obtains 99.81% classification accuracy, 99.2% sensitivity, 99.7% specificity and 99.8% segmentation accuracy on BRATS 2022 dataset. The experimental results of the proposed HCNN algorithm were compared with those of the state-of-the-art meningioma detection algorithms in this study.
doi_str_mv 10.1038/s41598-023-41576-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98bf0cfdaa9542ec8cba835b4b3d4487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98bf0cfdaa9542ec8cba835b4b3d4487</doaj_id><sourcerecordid>2860455260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7CKxIZNqP9jrxAahjLSUCRU1taN7cx4lNjFTir17fFMqkJZ4I2vrs_5dG2fqnqL0QeMqLzKDHMlG0RoU6pWNOJFdU4Q4w2hhLz8qz6rLnM-oLI4UQyr19UZbYUQipDzqvvmgg87H0eouwQ-1NM8xlRbNzkz-RhqCLY2A-Tse2_g1JpzsdT7hy55W69uburRTftoT9Ifm8_X6-36tp4ShNzHNL6pXvUwZHf5uF9UP7-sb1dfm-33683q07YxHMupoYpjTpHj0BlgkmJs2561oneypQKYQIobQblRPUcIEBWW9uCYIAo461p6UW0Wro1w0HfJj5AedASvT42YdhrS5M3gtJJdj0xvARRnxBlpOpCUd6yjljF5ZH1cWHdzNzprXCjXGZ5Bn58Ev9e7eK8xYm2LW1oI7x8JKf6aXZ706LNxwwDBxTlrIgWmiLRCFem7f6SHOKdQ3uqoKt_IiUBFRRaVSTHn5PqnaTDSx0joJRK6REKfIqFFMdHFlIs47Fz6g_6P6zfvjbc6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860455260</pqid></control><display><type>article</type><title>Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Prakash, B. V. ; Kannan, A. Rajiv ; Santhiyakumari, N. ; Kumarganesh, S. ; Raja, D. Siva Sundhara ; Hephzipah, J. Jasmine ; MartinSagayam, K. ; Pomplun, Marc ; Dang, Hien</creator><creatorcontrib>Prakash, B. V. ; Kannan, A. Rajiv ; Santhiyakumari, N. ; Kumarganesh, S. ; Raja, D. Siva Sundhara ; Hephzipah, J. Jasmine ; MartinSagayam, K. ; Pomplun, Marc ; Dang, Hien</creatorcontrib><description>The detection of meningioma tumors is the most crucial task compared with other tumors because of their lower pixel intensity. Modern medical platforms require a fully automated system for meningioma detection. Hence, this study proposes a novel and highly efficient hybrid Convolutional neural network (HCNN) classifier to distinguish meningioma brain images from non-meningioma brain images. The HCNN classification technique consists of the Ridgelet transform, feature computations, classifier module, and segmentation algorithm. Pixel stability during the decomposition process was improved by the Ridgelet transform, and the features were computed from the coefficient of the Ridgelet. These features were classified using the HCNN classification approach, and tumor pixels were detected using the segmentation algorithm. The experimental results were analyzed for meningioma tumor images by applying the proposed method to the BRATS 2019 and Nanfang dataset. The proposed HCNN-based meningioma detection system achieved 99.31% sensitivity, 99.37% specificity, and 99.24% segmentation accuracy for the BRATS 2019 dataset. The proposed HCNN technique achieved99.35% sensitivity, 99.22% specificity, and 99.04% segmentation accuracy on brain Magnetic Resonance Imaging (MRI) in the Nanfang dataset. The proposed system obtains 99.81% classification accuracy, 99.2% sensitivity, 99.7% specificity and 99.8% segmentation accuracy on BRATS 2022 dataset. The experimental results of the proposed HCNN algorithm were compared with those of the state-of-the-art meningioma detection algorithms in this study.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-41576-6</identifier><identifier>PMID: 37666922</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 639/705 ; Accuracy ; Algorithms ; Brain cancer ; Brain tumors ; Classification ; Datasets ; Humanities and Social Sciences ; Image processing ; Magnetic resonance imaging ; Meningioma ; multidisciplinary ; Neural networks ; Neuroimaging ; Science ; Science (multidisciplinary) ; Segmentation ; Tumors</subject><ispartof>Scientific reports, 2023-09, Vol.13 (1), p.14522-14522, Article 14522</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73</citedby><cites>FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2860455260/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2860455260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Prakash, B. V.</creatorcontrib><creatorcontrib>Kannan, A. Rajiv</creatorcontrib><creatorcontrib>Santhiyakumari, N.</creatorcontrib><creatorcontrib>Kumarganesh, S.</creatorcontrib><creatorcontrib>Raja, D. Siva Sundhara</creatorcontrib><creatorcontrib>Hephzipah, J. Jasmine</creatorcontrib><creatorcontrib>MartinSagayam, K.</creatorcontrib><creatorcontrib>Pomplun, Marc</creatorcontrib><creatorcontrib>Dang, Hien</creatorcontrib><title>Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The detection of meningioma tumors is the most crucial task compared with other tumors because of their lower pixel intensity. Modern medical platforms require a fully automated system for meningioma detection. Hence, this study proposes a novel and highly efficient hybrid Convolutional neural network (HCNN) classifier to distinguish meningioma brain images from non-meningioma brain images. The HCNN classification technique consists of the Ridgelet transform, feature computations, classifier module, and segmentation algorithm. Pixel stability during the decomposition process was improved by the Ridgelet transform, and the features were computed from the coefficient of the Ridgelet. These features were classified using the HCNN classification approach, and tumor pixels were detected using the segmentation algorithm. The experimental results were analyzed for meningioma tumor images by applying the proposed method to the BRATS 2019 and Nanfang dataset. The proposed HCNN-based meningioma detection system achieved 99.31% sensitivity, 99.37% specificity, and 99.24% segmentation accuracy for the BRATS 2019 dataset. The proposed HCNN technique achieved99.35% sensitivity, 99.22% specificity, and 99.04% segmentation accuracy on brain Magnetic Resonance Imaging (MRI) in the Nanfang dataset. The proposed system obtains 99.81% classification accuracy, 99.2% sensitivity, 99.7% specificity and 99.8% segmentation accuracy on BRATS 2022 dataset. The experimental results of the proposed HCNN algorithm were compared with those of the state-of-the-art meningioma detection algorithms in this study.</description><subject>631/114</subject><subject>639/705</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Classification</subject><subject>Datasets</subject><subject>Humanities and Social Sciences</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Meningioma</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7CKxIZNqP9jrxAahjLSUCRU1taN7cx4lNjFTir17fFMqkJZ4I2vrs_5dG2fqnqL0QeMqLzKDHMlG0RoU6pWNOJFdU4Q4w2hhLz8qz6rLnM-oLI4UQyr19UZbYUQipDzqvvmgg87H0eouwQ-1NM8xlRbNzkz-RhqCLY2A-Tse2_g1JpzsdT7hy55W69uburRTftoT9Ifm8_X6-36tp4ShNzHNL6pXvUwZHf5uF9UP7-sb1dfm-33683q07YxHMupoYpjTpHj0BlgkmJs2561oneypQKYQIobQblRPUcIEBWW9uCYIAo461p6UW0Wro1w0HfJj5AedASvT42YdhrS5M3gtJJdj0xvARRnxBlpOpCUd6yjljF5ZH1cWHdzNzprXCjXGZ5Bn58Ev9e7eK8xYm2LW1oI7x8JKf6aXZ706LNxwwDBxTlrIgWmiLRCFem7f6SHOKdQ3uqoKt_IiUBFRRaVSTHn5PqnaTDSx0joJRK6REKfIqFFMdHFlIs47Fz6g_6P6zfvjbc6</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Prakash, B. V.</creator><creator>Kannan, A. Rajiv</creator><creator>Santhiyakumari, N.</creator><creator>Kumarganesh, S.</creator><creator>Raja, D. Siva Sundhara</creator><creator>Hephzipah, J. Jasmine</creator><creator>MartinSagayam, K.</creator><creator>Pomplun, Marc</creator><creator>Dang, Hien</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230904</creationdate><title>Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform</title><author>Prakash, B. V. ; Kannan, A. Rajiv ; Santhiyakumari, N. ; Kumarganesh, S. ; Raja, D. Siva Sundhara ; Hephzipah, J. Jasmine ; MartinSagayam, K. ; Pomplun, Marc ; Dang, Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114</topic><topic>639/705</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Classification</topic><topic>Datasets</topic><topic>Humanities and Social Sciences</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Meningioma</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prakash, B. V.</creatorcontrib><creatorcontrib>Kannan, A. Rajiv</creatorcontrib><creatorcontrib>Santhiyakumari, N.</creatorcontrib><creatorcontrib>Kumarganesh, S.</creatorcontrib><creatorcontrib>Raja, D. Siva Sundhara</creatorcontrib><creatorcontrib>Hephzipah, J. Jasmine</creatorcontrib><creatorcontrib>MartinSagayam, K.</creatorcontrib><creatorcontrib>Pomplun, Marc</creatorcontrib><creatorcontrib>Dang, Hien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, B. V.</au><au>Kannan, A. Rajiv</au><au>Santhiyakumari, N.</au><au>Kumarganesh, S.</au><au>Raja, D. Siva Sundhara</au><au>Hephzipah, J. Jasmine</au><au>MartinSagayam, K.</au><au>Pomplun, Marc</au><au>Dang, Hien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-09-04</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>14522</spage><epage>14522</epage><pages>14522-14522</pages><artnum>14522</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The detection of meningioma tumors is the most crucial task compared with other tumors because of their lower pixel intensity. Modern medical platforms require a fully automated system for meningioma detection. Hence, this study proposes a novel and highly efficient hybrid Convolutional neural network (HCNN) classifier to distinguish meningioma brain images from non-meningioma brain images. The HCNN classification technique consists of the Ridgelet transform, feature computations, classifier module, and segmentation algorithm. Pixel stability during the decomposition process was improved by the Ridgelet transform, and the features were computed from the coefficient of the Ridgelet. These features were classified using the HCNN classification approach, and tumor pixels were detected using the segmentation algorithm. The experimental results were analyzed for meningioma tumor images by applying the proposed method to the BRATS 2019 and Nanfang dataset. The proposed HCNN-based meningioma detection system achieved 99.31% sensitivity, 99.37% specificity, and 99.24% segmentation accuracy for the BRATS 2019 dataset. The proposed HCNN technique achieved99.35% sensitivity, 99.22% specificity, and 99.04% segmentation accuracy on brain Magnetic Resonance Imaging (MRI) in the Nanfang dataset. The proposed system obtains 99.81% classification accuracy, 99.2% sensitivity, 99.7% specificity and 99.8% segmentation accuracy on BRATS 2022 dataset. The experimental results of the proposed HCNN algorithm were compared with those of the state-of-the-art meningioma detection algorithms in this study.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37666922</pmid><doi>10.1038/s41598-023-41576-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-09, Vol.13 (1), p.14522-14522, Article 14522
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_98bf0cfdaa9542ec8cba835b4b3d4487
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114
639/705
Accuracy
Algorithms
Brain cancer
Brain tumors
Classification
Datasets
Humanities and Social Sciences
Image processing
Magnetic resonance imaging
Meningioma
multidisciplinary
Neural networks
Neuroimaging
Science
Science (multidisciplinary)
Segmentation
Tumors
title Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meningioma%20brain%20tumor%20detection%20and%20classification%20using%20hybrid%20CNN%20method%20and%20RIDGELET%20transform&rft.jtitle=Scientific%20reports&rft.au=Prakash,%20B.%20V.&rft.date=2023-09-04&rft.volume=13&rft.issue=1&rft.spage=14522&rft.epage=14522&rft.pages=14522-14522&rft.artnum=14522&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-41576-6&rft_dat=%3Cproquest_doaj_%3E2860455260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-3951530e5abca48311d7f476fe8736a46095c635c9f500a036d3fae4629a54b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860455260&rft_id=info:pmid/37666922&rfr_iscdi=true