Loading…

Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm

Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2019-03, Vol.24 (6), p.1150
Main Authors: Estaña, Alejandro, Ghallab, Malik, Bernadó, Pau, Cortés, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193
cites cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193
container_end_page
container_issue 6
container_start_page 1150
container_title Molecules (Basel, Switzerland)
container_volume 24
creator Estaña, Alejandro
Ghallab, Malik
Bernadó, Pau
Cortés, Juan
description Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.
doi_str_mv 10.3390/molecules24061150
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98c603f308304d67b943e512d2468350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98c603f308304d67b943e512d2468350</doaj_id><sourcerecordid>2197888318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</originalsourceid><addsrcrecordid>eNplUk1v1DAUjBCIlsIP4IIscSmHgD8S27kgrUrLrrQSSKVny2u_ZLNK7MV2VuIv8Ktx2LJqy8n288y88fgVxVuCPzLW4E-jH8BMA0RaYU5IjZ8V56SiuGS4ap4_2J8Vr2LcYUxJReqXxRnDDW4qKc-L3yt3gJj6TqfedShtAd34MOaTd8i36DaFyaQp6AFdDzCCSxH1Dn0PPkHvIrqLM23tTQbcws8JnIHyC-zB2YxFK9ee1LSzSKMlTKHPDU2G62C2aDF0PvRpO74uXrR6iPDmfr0o7m6uf1wty_W3r6urxbo0NRWplIaKCgyjopUNMxgzwTkIKqVlRFtjtcVCM14zymsjuJC8BabZhhq-aUnDLorVUdd6vVP70I86_FJe9-pvwYdO6ZANDqAaaThmLcMyp2i52DQVg5pQSysuWY2z1uej1n7ajGBNfnOO6pHo4xvXb1XnD4pXgohmNvPhKLB9Qlsu1mquYYpl_jh-IBl7ed8s-Jx0TGrso4Fh0A78FBUljZBSMiIz9P0T6M5PweVYFa2rnBthfHZPjigTfIwB2pMDgtU8Yeq_Ccucdw9ffGL8Gyn2B-tgztw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548931360</pqid></control><display><type>article</type><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</creator><creatorcontrib>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</creatorcontrib><description>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules24061150</identifier><identifier>PMID: 30909488</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Amino acids ; Artificial Intelligence ; Biochemistry ; Biochemistry, Molecular Biology ; Bioinformatics ; Computer applications ; Computer Science ; conformational transitions ; Folding ; Heuristic ; heuristic search algorithms ; Investigations ; Libraries ; Life Sciences ; Metabolism ; Mimicry ; Modeling and Simulation ; Mutation ; Polypeptides ; Problem solving ; Protein folding ; Proteins ; Robotics ; Search algorithms ; Simulation ; structural database ; structural elements ; Structural members</subject><ispartof>Molecules (Basel, Switzerland), 2019-03, Vol.24 (6), p.1150</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</citedby><cites>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</cites><orcidid>0000-0002-4660-0306 ; 0000-0002-4326-049X ; 0000-0001-7395-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548931360/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548931360?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30909488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://laas.hal.science/hal-02080026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estaña, Alejandro</creatorcontrib><creatorcontrib>Ghallab, Malik</creatorcontrib><creatorcontrib>Bernadó, Pau</creatorcontrib><creatorcontrib>Cortés, Juan</creatorcontrib><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>conformational transitions</subject><subject>Folding</subject><subject>Heuristic</subject><subject>heuristic search algorithms</subject><subject>Investigations</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>Modeling and Simulation</subject><subject>Mutation</subject><subject>Polypeptides</subject><subject>Problem solving</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Simulation</subject><subject>structural database</subject><subject>structural elements</subject><subject>Structural members</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUk1v1DAUjBCIlsIP4IIscSmHgD8S27kgrUrLrrQSSKVny2u_ZLNK7MV2VuIv8Ktx2LJqy8n288y88fgVxVuCPzLW4E-jH8BMA0RaYU5IjZ8V56SiuGS4ap4_2J8Vr2LcYUxJReqXxRnDDW4qKc-L3yt3gJj6TqfedShtAd34MOaTd8i36DaFyaQp6AFdDzCCSxH1Dn0PPkHvIrqLM23tTQbcws8JnIHyC-zB2YxFK9ee1LSzSKMlTKHPDU2G62C2aDF0PvRpO74uXrR6iPDmfr0o7m6uf1wty_W3r6urxbo0NRWplIaKCgyjopUNMxgzwTkIKqVlRFtjtcVCM14zymsjuJC8BabZhhq-aUnDLorVUdd6vVP70I86_FJe9-pvwYdO6ZANDqAaaThmLcMyp2i52DQVg5pQSysuWY2z1uej1n7ajGBNfnOO6pHo4xvXb1XnD4pXgohmNvPhKLB9Qlsu1mquYYpl_jh-IBl7ed8s-Jx0TGrso4Fh0A78FBUljZBSMiIz9P0T6M5PweVYFa2rnBthfHZPjigTfIwB2pMDgtU8Yeq_Ccucdw9ffGL8Gyn2B-tgztw</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Estaña, Alejandro</creator><creator>Ghallab, Malik</creator><creator>Bernadó, Pau</creator><creator>Cortés, Juan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4660-0306</orcidid><orcidid>https://orcid.org/0000-0002-4326-049X</orcidid><orcidid>https://orcid.org/0000-0001-7395-5922</orcidid></search><sort><creationdate>20190322</creationdate><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><author>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>conformational transitions</topic><topic>Folding</topic><topic>Heuristic</topic><topic>heuristic search algorithms</topic><topic>Investigations</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>Modeling and Simulation</topic><topic>Mutation</topic><topic>Polypeptides</topic><topic>Problem solving</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Simulation</topic><topic>structural database</topic><topic>structural elements</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estaña, Alejandro</creatorcontrib><creatorcontrib>Ghallab, Malik</creatorcontrib><creatorcontrib>Bernadó, Pau</creatorcontrib><creatorcontrib>Cortés, Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estaña, Alejandro</au><au>Ghallab, Malik</au><au>Bernadó, Pau</au><au>Cortés, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>24</volume><issue>6</issue><spage>1150</spage><pages>1150-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30909488</pmid><doi>10.3390/molecules24061150</doi><orcidid>https://orcid.org/0000-0002-4660-0306</orcidid><orcidid>https://orcid.org/0000-0002-4326-049X</orcidid><orcidid>https://orcid.org/0000-0001-7395-5922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2019-03, Vol.24 (6), p.1150
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_98c603f308304d67b943e512d2468350
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Algorithms
Amino acids
Artificial Intelligence
Biochemistry
Biochemistry, Molecular Biology
Bioinformatics
Computer applications
Computer Science
conformational transitions
Folding
Heuristic
heuristic search algorithms
Investigations
Libraries
Life Sciences
Metabolism
Mimicry
Modeling and Simulation
Mutation
Polypeptides
Problem solving
Protein folding
Proteins
Robotics
Search algorithms
Simulation
structural database
structural elements
Structural members
title Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Formation%20of%20Structural%20Elements%20in%20Proteins%20Using%20Local%20Sequence-Dependent%20Information%20and%20a%20Heuristic%20Search%20Algorithm&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Esta%C3%B1a,%20Alejandro&rft.date=2019-03-22&rft.volume=24&rft.issue=6&rft.spage=1150&rft.pages=1150-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules24061150&rft_dat=%3Cproquest_doaj_%3E2197888318%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548931360&rft_id=info:pmid/30909488&rfr_iscdi=true