Loading…
Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm
Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2019-03, Vol.24 (6), p.1150 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193 |
container_end_page | |
container_issue | 6 |
container_start_page | 1150 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 24 |
creator | Estaña, Alejandro Ghallab, Malik Bernadó, Pau Cortés, Juan |
description | Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction. |
doi_str_mv | 10.3390/molecules24061150 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98c603f308304d67b943e512d2468350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98c603f308304d67b943e512d2468350</doaj_id><sourcerecordid>2197888318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</originalsourceid><addsrcrecordid>eNplUk1v1DAUjBCIlsIP4IIscSmHgD8S27kgrUrLrrQSSKVny2u_ZLNK7MV2VuIv8Ktx2LJqy8n288y88fgVxVuCPzLW4E-jH8BMA0RaYU5IjZ8V56SiuGS4ap4_2J8Vr2LcYUxJReqXxRnDDW4qKc-L3yt3gJj6TqfedShtAd34MOaTd8i36DaFyaQp6AFdDzCCSxH1Dn0PPkHvIrqLM23tTQbcws8JnIHyC-zB2YxFK9ee1LSzSKMlTKHPDU2G62C2aDF0PvRpO74uXrR6iPDmfr0o7m6uf1wty_W3r6urxbo0NRWplIaKCgyjopUNMxgzwTkIKqVlRFtjtcVCM14zymsjuJC8BabZhhq-aUnDLorVUdd6vVP70I86_FJe9-pvwYdO6ZANDqAaaThmLcMyp2i52DQVg5pQSysuWY2z1uej1n7ajGBNfnOO6pHo4xvXb1XnD4pXgohmNvPhKLB9Qlsu1mquYYpl_jh-IBl7ed8s-Jx0TGrso4Fh0A78FBUljZBSMiIz9P0T6M5PweVYFa2rnBthfHZPjigTfIwB2pMDgtU8Yeq_Ccucdw9ffGL8Gyn2B-tgztw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548931360</pqid></control><display><type>article</type><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</creator><creatorcontrib>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</creatorcontrib><description>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules24061150</identifier><identifier>PMID: 30909488</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Amino acids ; Artificial Intelligence ; Biochemistry ; Biochemistry, Molecular Biology ; Bioinformatics ; Computer applications ; Computer Science ; conformational transitions ; Folding ; Heuristic ; heuristic search algorithms ; Investigations ; Libraries ; Life Sciences ; Metabolism ; Mimicry ; Modeling and Simulation ; Mutation ; Polypeptides ; Problem solving ; Protein folding ; Proteins ; Robotics ; Search algorithms ; Simulation ; structural database ; structural elements ; Structural members</subject><ispartof>Molecules (Basel, Switzerland), 2019-03, Vol.24 (6), p.1150</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</citedby><cites>FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</cites><orcidid>0000-0002-4660-0306 ; 0000-0002-4326-049X ; 0000-0001-7395-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548931360/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548931360?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30909488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://laas.hal.science/hal-02080026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estaña, Alejandro</creatorcontrib><creatorcontrib>Ghallab, Malik</creatorcontrib><creatorcontrib>Bernadó, Pau</creatorcontrib><creatorcontrib>Cortés, Juan</creatorcontrib><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>conformational transitions</subject><subject>Folding</subject><subject>Heuristic</subject><subject>heuristic search algorithms</subject><subject>Investigations</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mimicry</subject><subject>Modeling and Simulation</subject><subject>Mutation</subject><subject>Polypeptides</subject><subject>Problem solving</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Robotics</subject><subject>Search algorithms</subject><subject>Simulation</subject><subject>structural database</subject><subject>structural elements</subject><subject>Structural members</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUk1v1DAUjBCIlsIP4IIscSmHgD8S27kgrUrLrrQSSKVny2u_ZLNK7MV2VuIv8Ktx2LJqy8n288y88fgVxVuCPzLW4E-jH8BMA0RaYU5IjZ8V56SiuGS4ap4_2J8Vr2LcYUxJReqXxRnDDW4qKc-L3yt3gJj6TqfedShtAd34MOaTd8i36DaFyaQp6AFdDzCCSxH1Dn0PPkHvIrqLM23tTQbcws8JnIHyC-zB2YxFK9ee1LSzSKMlTKHPDU2G62C2aDF0PvRpO74uXrR6iPDmfr0o7m6uf1wty_W3r6urxbo0NRWplIaKCgyjopUNMxgzwTkIKqVlRFtjtcVCM14zymsjuJC8BabZhhq-aUnDLorVUdd6vVP70I86_FJe9-pvwYdO6ZANDqAaaThmLcMyp2i52DQVg5pQSysuWY2z1uej1n7ajGBNfnOO6pHo4xvXb1XnD4pXgohmNvPhKLB9Qlsu1mquYYpl_jh-IBl7ed8s-Jx0TGrso4Fh0A78FBUljZBSMiIz9P0T6M5PweVYFa2rnBthfHZPjigTfIwB2pMDgtU8Yeq_Ccucdw9ffGL8Gyn2B-tgztw</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Estaña, Alejandro</creator><creator>Ghallab, Malik</creator><creator>Bernadó, Pau</creator><creator>Cortés, Juan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4660-0306</orcidid><orcidid>https://orcid.org/0000-0002-4326-049X</orcidid><orcidid>https://orcid.org/0000-0001-7395-5922</orcidid></search><sort><creationdate>20190322</creationdate><title>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</title><author>Estaña, Alejandro ; Ghallab, Malik ; Bernadó, Pau ; Cortés, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>conformational transitions</topic><topic>Folding</topic><topic>Heuristic</topic><topic>heuristic search algorithms</topic><topic>Investigations</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mimicry</topic><topic>Modeling and Simulation</topic><topic>Mutation</topic><topic>Polypeptides</topic><topic>Problem solving</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Robotics</topic><topic>Search algorithms</topic><topic>Simulation</topic><topic>structural database</topic><topic>structural elements</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estaña, Alejandro</creatorcontrib><creatorcontrib>Ghallab, Malik</creatorcontrib><creatorcontrib>Bernadó, Pau</creatorcontrib><creatorcontrib>Cortés, Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estaña, Alejandro</au><au>Ghallab, Malik</au><au>Bernadó, Pau</au><au>Cortés, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>24</volume><issue>6</issue><spage>1150</spage><pages>1150-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30909488</pmid><doi>10.3390/molecules24061150</doi><orcidid>https://orcid.org/0000-0002-4660-0306</orcidid><orcidid>https://orcid.org/0000-0002-4326-049X</orcidid><orcidid>https://orcid.org/0000-0001-7395-5922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2019-03, Vol.24 (6), p.1150 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_98c603f308304d67b943e512d2468350 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Algorithms Amino acids Artificial Intelligence Biochemistry Biochemistry, Molecular Biology Bioinformatics Computer applications Computer Science conformational transitions Folding Heuristic heuristic search algorithms Investigations Libraries Life Sciences Metabolism Mimicry Modeling and Simulation Mutation Polypeptides Problem solving Protein folding Proteins Robotics Search algorithms Simulation structural database structural elements Structural members |
title | Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Formation%20of%20Structural%20Elements%20in%20Proteins%20Using%20Local%20Sequence-Dependent%20Information%20and%20a%20Heuristic%20Search%20Algorithm&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Esta%C3%B1a,%20Alejandro&rft.date=2019-03-22&rft.volume=24&rft.issue=6&rft.spage=1150&rft.pages=1150-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules24061150&rft_dat=%3Cproquest_doaj_%3E2197888318%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-8c274ec327f893c003766e7288d31adcdad07a3653265c76786fe3a3b2c6bf193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548931360&rft_id=info:pmid/30909488&rfr_iscdi=true |