Loading…

Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in th...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-03, Vol.15 (1), p.2561-2561, Article 2561
Main Authors: Xu, Wenqing, Huang, Guanheng, Yang, Zhan, Deng, Ziqi, Zhou, Chen, Li, Jian-An, Li, Ming-De, Hu, Tao, Tang, Ben Zhong, Phillips, David Lee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications. Cocrystal engineering is a promising strategy for constructing multifunctional materials. Here, the authors describe nucleic-acid-base cocrystal systems with different colors of phosphorescence from their monomeric counterparts and high-temperature phosphorescence with antimicrobial effects and data encryption applications.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46869-6