Loading…
High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance
Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization o...
Saved in:
Published in: | Fermentation (Basel) 2023-10, Vol.9 (10), p.906 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3 |
container_end_page | |
container_issue | 10 |
container_start_page | 906 |
container_title | Fermentation (Basel) |
container_volume | 9 |
creator | Wu, Yilu Su, Changsheng Zhang, Gege Liao, Zicheng Wen, Jieyi Wang, Yankun Jiang, Yongjie Zhang, Changwei Cai, Di |
description | Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works. |
doi_str_mv | 10.3390/fermentation9100906 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5</doaj_id><sourcerecordid>2882568701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</originalsourceid><addsrcrecordid>eNptkc9uEzEQxi0EElXoE3CxxHnBu3a83iNEgUaqRKWmZ2tsz2YdbexgO4U-By-M0yDEoaf5o_l-34yGkPct-8j5wD6NmA4YChQfw9AyNjD5ilx1vG2bpeT96__yt-Q65z1jrOuEZC2_Ir9v_G5qtr5gol98xDJBiDO9S9Gd7JlIxxQP9L4gHJr1r-McHTq6iinUXnysqofsw45CoOuw8wExnct7sHaCqnyymKnFhI8-e8AqSuAD_enLRM_WdBMmb3yJiW7jjAmCxXfkzQhzxuu_cUEevq63q5vm9vu3zerzbWO5UqUB4aQR0g5SCTT1RMSlwN6BcoMZFJPCPB-JIKzpjDBOCIZy6NrO9dAaviCbC9dF2Otj8gdITzqC18-NmHYaUvF2Rj0oRCaZxMqrFAWil0oayVEyB-Oysj5cWMcUf5wwF72PpxTq-rpTqltK1VfpgvDLlE0x54TjP9eW6fMz9QvP5H8AkDmXrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882568701</pqid></control><display><type>article</type><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><source>Publicly Available Content Database</source><creator>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</creator><creatorcontrib>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</creatorcontrib><description>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</description><identifier>ISSN: 2311-5637</identifier><identifier>EISSN: 2311-5637</identifier><identifier>DOI: 10.3390/fermentation9100906</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aldehyde reductase ; Alkaline phosphatase ; Batch culture ; bioethanol ; Biofuels ; Cellulase ; Cellulose ; CRISPR ; Dehydrogenases ; Dietary supplements ; Drug tolerance ; Ethanol ; evolution engineering ; Fermentation ; Gene expression ; Genetic engineering ; Glucose ; Hydrolysates ; Lignocellulose ; metabolic engineering ; Metabolism ; Pentose phosphate pathway ; Plasmids ; Saccharomyces cerevisiae ; steam explosion ; Toxicity ; Xylitol ; Xylitol dehydrogenase ; Xylose ; Xylose reductase ; Yeast</subject><ispartof>Fermentation (Basel), 2023-10, Vol.9 (10), p.906</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</citedby><cites>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882568701/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882568701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Wu, Yilu</creatorcontrib><creatorcontrib>Su, Changsheng</creatorcontrib><creatorcontrib>Zhang, Gege</creatorcontrib><creatorcontrib>Liao, Zicheng</creatorcontrib><creatorcontrib>Wen, Jieyi</creatorcontrib><creatorcontrib>Wang, Yankun</creatorcontrib><creatorcontrib>Jiang, Yongjie</creatorcontrib><creatorcontrib>Zhang, Changwei</creatorcontrib><creatorcontrib>Cai, Di</creatorcontrib><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><title>Fermentation (Basel)</title><description>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</description><subject>Aldehyde reductase</subject><subject>Alkaline phosphatase</subject><subject>Batch culture</subject><subject>bioethanol</subject><subject>Biofuels</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>CRISPR</subject><subject>Dehydrogenases</subject><subject>Dietary supplements</subject><subject>Drug tolerance</subject><subject>Ethanol</subject><subject>evolution engineering</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Glucose</subject><subject>Hydrolysates</subject><subject>Lignocellulose</subject><subject>metabolic engineering</subject><subject>Metabolism</subject><subject>Pentose phosphate pathway</subject><subject>Plasmids</subject><subject>Saccharomyces cerevisiae</subject><subject>steam explosion</subject><subject>Toxicity</subject><subject>Xylitol</subject><subject>Xylitol dehydrogenase</subject><subject>Xylose</subject><subject>Xylose reductase</subject><subject>Yeast</subject><issn>2311-5637</issn><issn>2311-5637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9uEzEQxi0EElXoE3CxxHnBu3a83iNEgUaqRKWmZ2tsz2YdbexgO4U-By-M0yDEoaf5o_l-34yGkPct-8j5wD6NmA4YChQfw9AyNjD5ilx1vG2bpeT96__yt-Q65z1jrOuEZC2_Ir9v_G5qtr5gol98xDJBiDO9S9Gd7JlIxxQP9L4gHJr1r-McHTq6iinUXnysqofsw45CoOuw8wExnct7sHaCqnyymKnFhI8-e8AqSuAD_enLRM_WdBMmb3yJiW7jjAmCxXfkzQhzxuu_cUEevq63q5vm9vu3zerzbWO5UqUB4aQR0g5SCTT1RMSlwN6BcoMZFJPCPB-JIKzpjDBOCIZy6NrO9dAaviCbC9dF2Otj8gdITzqC18-NmHYaUvF2Rj0oRCaZxMqrFAWil0oayVEyB-Oysj5cWMcUf5wwF72PpxTq-rpTqltK1VfpgvDLlE0x54TjP9eW6fMz9QvP5H8AkDmXrw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wu, Yilu</creator><creator>Su, Changsheng</creator><creator>Zhang, Gege</creator><creator>Liao, Zicheng</creator><creator>Wen, Jieyi</creator><creator>Wang, Yankun</creator><creator>Jiang, Yongjie</creator><creator>Zhang, Changwei</creator><creator>Cai, Di</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20231001</creationdate><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><author>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aldehyde reductase</topic><topic>Alkaline phosphatase</topic><topic>Batch culture</topic><topic>bioethanol</topic><topic>Biofuels</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>CRISPR</topic><topic>Dehydrogenases</topic><topic>Dietary supplements</topic><topic>Drug tolerance</topic><topic>Ethanol</topic><topic>evolution engineering</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Glucose</topic><topic>Hydrolysates</topic><topic>Lignocellulose</topic><topic>metabolic engineering</topic><topic>Metabolism</topic><topic>Pentose phosphate pathway</topic><topic>Plasmids</topic><topic>Saccharomyces cerevisiae</topic><topic>steam explosion</topic><topic>Toxicity</topic><topic>Xylitol</topic><topic>Xylitol dehydrogenase</topic><topic>Xylose</topic><topic>Xylose reductase</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yilu</creatorcontrib><creatorcontrib>Su, Changsheng</creatorcontrib><creatorcontrib>Zhang, Gege</creatorcontrib><creatorcontrib>Liao, Zicheng</creatorcontrib><creatorcontrib>Wen, Jieyi</creatorcontrib><creatorcontrib>Wang, Yankun</creatorcontrib><creatorcontrib>Jiang, Yongjie</creatorcontrib><creatorcontrib>Zhang, Changwei</creatorcontrib><creatorcontrib>Cai, Di</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fermentation (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yilu</au><au>Su, Changsheng</au><au>Zhang, Gege</au><au>Liao, Zicheng</au><au>Wen, Jieyi</au><au>Wang, Yankun</au><au>Jiang, Yongjie</au><au>Zhang, Changwei</au><au>Cai, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</atitle><jtitle>Fermentation (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>9</volume><issue>10</issue><spage>906</spage><pages>906-</pages><issn>2311-5637</issn><eissn>2311-5637</eissn><abstract>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fermentation9100906</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-5637 |
ispartof | Fermentation (Basel), 2023-10, Vol.9 (10), p.906 |
issn | 2311-5637 2311-5637 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5 |
source | Publicly Available Content Database |
subjects | Aldehyde reductase Alkaline phosphatase Batch culture bioethanol Biofuels Cellulase Cellulose CRISPR Dehydrogenases Dietary supplements Drug tolerance Ethanol evolution engineering Fermentation Gene expression Genetic engineering Glucose Hydrolysates Lignocellulose metabolic engineering Metabolism Pentose phosphate pathway Plasmids Saccharomyces cerevisiae steam explosion Toxicity Xylitol Xylitol dehydrogenase Xylose Xylose reductase Yeast |
title | High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Titer%20Bioethanol%20Production%20from%20Steam-Exploded%20Corn%20Stover%20Using%20an%20Engineering%20Saccharomyces%20cerevisiae%20Strain%20with%20High%20Inhibitor%20Tolerance&rft.jtitle=Fermentation%20(Basel)&rft.au=Wu,%20Yilu&rft.date=2023-10-01&rft.volume=9&rft.issue=10&rft.spage=906&rft.pages=906-&rft.issn=2311-5637&rft.eissn=2311-5637&rft_id=info:doi/10.3390/fermentation9100906&rft_dat=%3Cproquest_doaj_%3E2882568701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882568701&rft_id=info:pmid/&rfr_iscdi=true |