Loading…

High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance

Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization o...

Full description

Saved in:
Bibliographic Details
Published in:Fermentation (Basel) 2023-10, Vol.9 (10), p.906
Main Authors: Wu, Yilu, Su, Changsheng, Zhang, Gege, Liao, Zicheng, Wen, Jieyi, Wang, Yankun, Jiang, Yongjie, Zhang, Changwei, Cai, Di
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3
cites cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3
container_end_page
container_issue 10
container_start_page 906
container_title Fermentation (Basel)
container_volume 9
creator Wu, Yilu
Su, Changsheng
Zhang, Gege
Liao, Zicheng
Wen, Jieyi
Wang, Yankun
Jiang, Yongjie
Zhang, Changwei
Cai, Di
description Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.
doi_str_mv 10.3390/fermentation9100906
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5</doaj_id><sourcerecordid>2882568701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</originalsourceid><addsrcrecordid>eNptkc9uEzEQxi0EElXoE3CxxHnBu3a83iNEgUaqRKWmZ2tsz2YdbexgO4U-By-M0yDEoaf5o_l-34yGkPct-8j5wD6NmA4YChQfw9AyNjD5ilx1vG2bpeT96__yt-Q65z1jrOuEZC2_Ir9v_G5qtr5gol98xDJBiDO9S9Gd7JlIxxQP9L4gHJr1r-McHTq6iinUXnysqofsw45CoOuw8wExnct7sHaCqnyymKnFhI8-e8AqSuAD_enLRM_WdBMmb3yJiW7jjAmCxXfkzQhzxuu_cUEevq63q5vm9vu3zerzbWO5UqUB4aQR0g5SCTT1RMSlwN6BcoMZFJPCPB-JIKzpjDBOCIZy6NrO9dAaviCbC9dF2Otj8gdITzqC18-NmHYaUvF2Rj0oRCaZxMqrFAWil0oayVEyB-Oysj5cWMcUf5wwF72PpxTq-rpTqltK1VfpgvDLlE0x54TjP9eW6fMz9QvP5H8AkDmXrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882568701</pqid></control><display><type>article</type><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><source>Publicly Available Content Database</source><creator>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</creator><creatorcontrib>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</creatorcontrib><description>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</description><identifier>ISSN: 2311-5637</identifier><identifier>EISSN: 2311-5637</identifier><identifier>DOI: 10.3390/fermentation9100906</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aldehyde reductase ; Alkaline phosphatase ; Batch culture ; bioethanol ; Biofuels ; Cellulase ; Cellulose ; CRISPR ; Dehydrogenases ; Dietary supplements ; Drug tolerance ; Ethanol ; evolution engineering ; Fermentation ; Gene expression ; Genetic engineering ; Glucose ; Hydrolysates ; Lignocellulose ; metabolic engineering ; Metabolism ; Pentose phosphate pathway ; Plasmids ; Saccharomyces cerevisiae ; steam explosion ; Toxicity ; Xylitol ; Xylitol dehydrogenase ; Xylose ; Xylose reductase ; Yeast</subject><ispartof>Fermentation (Basel), 2023-10, Vol.9 (10), p.906</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</citedby><cites>FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882568701/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882568701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Wu, Yilu</creatorcontrib><creatorcontrib>Su, Changsheng</creatorcontrib><creatorcontrib>Zhang, Gege</creatorcontrib><creatorcontrib>Liao, Zicheng</creatorcontrib><creatorcontrib>Wen, Jieyi</creatorcontrib><creatorcontrib>Wang, Yankun</creatorcontrib><creatorcontrib>Jiang, Yongjie</creatorcontrib><creatorcontrib>Zhang, Changwei</creatorcontrib><creatorcontrib>Cai, Di</creatorcontrib><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><title>Fermentation (Basel)</title><description>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</description><subject>Aldehyde reductase</subject><subject>Alkaline phosphatase</subject><subject>Batch culture</subject><subject>bioethanol</subject><subject>Biofuels</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>CRISPR</subject><subject>Dehydrogenases</subject><subject>Dietary supplements</subject><subject>Drug tolerance</subject><subject>Ethanol</subject><subject>evolution engineering</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Glucose</subject><subject>Hydrolysates</subject><subject>Lignocellulose</subject><subject>metabolic engineering</subject><subject>Metabolism</subject><subject>Pentose phosphate pathway</subject><subject>Plasmids</subject><subject>Saccharomyces cerevisiae</subject><subject>steam explosion</subject><subject>Toxicity</subject><subject>Xylitol</subject><subject>Xylitol dehydrogenase</subject><subject>Xylose</subject><subject>Xylose reductase</subject><subject>Yeast</subject><issn>2311-5637</issn><issn>2311-5637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9uEzEQxi0EElXoE3CxxHnBu3a83iNEgUaqRKWmZ2tsz2YdbexgO4U-By-M0yDEoaf5o_l-34yGkPct-8j5wD6NmA4YChQfw9AyNjD5ilx1vG2bpeT96__yt-Q65z1jrOuEZC2_Ir9v_G5qtr5gol98xDJBiDO9S9Gd7JlIxxQP9L4gHJr1r-McHTq6iinUXnysqofsw45CoOuw8wExnct7sHaCqnyymKnFhI8-e8AqSuAD_enLRM_WdBMmb3yJiW7jjAmCxXfkzQhzxuu_cUEevq63q5vm9vu3zerzbWO5UqUB4aQR0g5SCTT1RMSlwN6BcoMZFJPCPB-JIKzpjDBOCIZy6NrO9dAaviCbC9dF2Otj8gdITzqC18-NmHYaUvF2Rj0oRCaZxMqrFAWil0oayVEyB-Oysj5cWMcUf5wwF72PpxTq-rpTqltK1VfpgvDLlE0x54TjP9eW6fMz9QvP5H8AkDmXrw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wu, Yilu</creator><creator>Su, Changsheng</creator><creator>Zhang, Gege</creator><creator>Liao, Zicheng</creator><creator>Wen, Jieyi</creator><creator>Wang, Yankun</creator><creator>Jiang, Yongjie</creator><creator>Zhang, Changwei</creator><creator>Cai, Di</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20231001</creationdate><title>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</title><author>Wu, Yilu ; Su, Changsheng ; Zhang, Gege ; Liao, Zicheng ; Wen, Jieyi ; Wang, Yankun ; Jiang, Yongjie ; Zhang, Changwei ; Cai, Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aldehyde reductase</topic><topic>Alkaline phosphatase</topic><topic>Batch culture</topic><topic>bioethanol</topic><topic>Biofuels</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>CRISPR</topic><topic>Dehydrogenases</topic><topic>Dietary supplements</topic><topic>Drug tolerance</topic><topic>Ethanol</topic><topic>evolution engineering</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Glucose</topic><topic>Hydrolysates</topic><topic>Lignocellulose</topic><topic>metabolic engineering</topic><topic>Metabolism</topic><topic>Pentose phosphate pathway</topic><topic>Plasmids</topic><topic>Saccharomyces cerevisiae</topic><topic>steam explosion</topic><topic>Toxicity</topic><topic>Xylitol</topic><topic>Xylitol dehydrogenase</topic><topic>Xylose</topic><topic>Xylose reductase</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yilu</creatorcontrib><creatorcontrib>Su, Changsheng</creatorcontrib><creatorcontrib>Zhang, Gege</creatorcontrib><creatorcontrib>Liao, Zicheng</creatorcontrib><creatorcontrib>Wen, Jieyi</creatorcontrib><creatorcontrib>Wang, Yankun</creatorcontrib><creatorcontrib>Jiang, Yongjie</creatorcontrib><creatorcontrib>Zhang, Changwei</creatorcontrib><creatorcontrib>Cai, Di</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fermentation (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yilu</au><au>Su, Changsheng</au><au>Zhang, Gege</au><au>Liao, Zicheng</au><au>Wen, Jieyi</au><au>Wang, Yankun</au><au>Jiang, Yongjie</au><au>Zhang, Changwei</au><au>Cai, Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance</atitle><jtitle>Fermentation (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>9</volume><issue>10</issue><spage>906</spage><pages>906-</pages><issn>2311-5637</issn><eissn>2311-5637</eissn><abstract>Bioethanol is an important biofuel which can be produced from the abundant low-value lignocelluloses. However, the highly toxic inhibitory compounds formed in the hydrolysate and the ineffective utilization of xylose as a co-substrate are the primarily bottlenecks that hinder the commercialization of lignocellulosic bioethanol. In this study, aiming to properly solve the above obstacles, an engineered Saccharomyces cerevisiae strain was constructed by introducing the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway, overexpressing the non-oxidized pentose phosphate pathway, and deleting aldose reductase GRE3 and alkaline phosphatase PHO13 using a GTR-CRISPR system, followed by adaptive laboratory evolution (ALE). After screening, the isolated S. cerevisiae YL13-2 mutant was capable of robust xylose-utilizing, and exhibited high tolerance to the inhibitors in undetoxified steam-exploded corn stover hydrolysate (SECSH). An ethanol concentration of 22.96 g/L with a yield of 0.454 g/g can be obtained at the end of batch fermentation when using SECSH as substrate without nutrient supplementation. Moreover, aiming to simplify the downstream process and reduce the energy required in bioethanol production, fermentation using fed-batch hydrolyzed SECSH containing higher titer sugars with a YL13-2 strain was also investigated. As expect, a higher concentration of ethanol (51.12 g/L) was received, with an average productivity and yield of 0.71 g/L h and 0.436 g/g, respectively. The findings of this research provide an effective method for the production of bioethanol from lignocellulose, and could be used in large-scale applications in future works.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fermentation9100906</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-5637
ispartof Fermentation (Basel), 2023-10, Vol.9 (10), p.906
issn 2311-5637
2311-5637
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_98ee0606e0134408a47686b63e60daf5
source Publicly Available Content Database
subjects Aldehyde reductase
Alkaline phosphatase
Batch culture
bioethanol
Biofuels
Cellulase
Cellulose
CRISPR
Dehydrogenases
Dietary supplements
Drug tolerance
Ethanol
evolution engineering
Fermentation
Gene expression
Genetic engineering
Glucose
Hydrolysates
Lignocellulose
metabolic engineering
Metabolism
Pentose phosphate pathway
Plasmids
Saccharomyces cerevisiae
steam explosion
Toxicity
Xylitol
Xylitol dehydrogenase
Xylose
Xylose reductase
Yeast
title High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Titer%20Bioethanol%20Production%20from%20Steam-Exploded%20Corn%20Stover%20Using%20an%20Engineering%20Saccharomyces%20cerevisiae%20Strain%20with%20High%20Inhibitor%20Tolerance&rft.jtitle=Fermentation%20(Basel)&rft.au=Wu,%20Yilu&rft.date=2023-10-01&rft.volume=9&rft.issue=10&rft.spage=906&rft.pages=906-&rft.issn=2311-5637&rft.eissn=2311-5637&rft_id=info:doi/10.3390/fermentation9100906&rft_dat=%3Cproquest_doaj_%3E2882568701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-a4d6b46c9684eb311ee54e7da8d9b98064b46013ea4cb2b4bd440e69212d7a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882568701&rft_id=info:pmid/&rfr_iscdi=true