Loading…

Vascular smooth muscle cell dysfunction in neurodegeneration

Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain’s oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research sugges...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2022-11, Vol.16, p.1010164-1010164
Main Authors: Hayes, Genevieve, Pinto, Joana, Sparks, Sierra N., Wang, Congxiyu, Suri, Sana, Bulte, Daniel P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023
cites cdi_FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023
container_end_page 1010164
container_issue
container_start_page 1010164
container_title Frontiers in neuroscience
container_volume 16
creator Hayes, Genevieve
Pinto, Joana
Sparks, Sierra N.
Wang, Congxiyu
Suri, Sana
Bulte, Daniel P.
description Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain’s oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo . However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer’s disease, and Parkinson’s disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
doi_str_mv 10.3389/fnins.2022.1010164
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_98fd2fbc651241a0b2fb72bd4d39f260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_98fd2fbc651241a0b2fb72bd4d39f260</doaj_id><sourcerecordid>2740907646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhosouK7-AU89etk1X00aEEHEjwXBi4i3ME2ma5c2WZNW8N_buosoc5hhZnjeYd4sO6dkyXmpL2vf-LRkhLElJWNIcZDNqJRsIQr-dvinPs5OUtoQIlkp2Cy7eoVkhxZinroQ-ve8G5JtMbfYtrn7SvXgbd8Enzc-9zjE4HCNHiNMzdPsqIY24dk-z7OX-7uX28fF0_PD6vbmaWGFKPoF8BpQCUap0q5idaWdLaQCxQupwVpVltJRUaBErbEqlLNQSEKRcgWE8Xm22mFdgI3ZxqaD-GUCNOanEeLaQOyb8Wyjy9qNAlYWlAkKZFJTrHLCcV0zSUbW9Y61HaoOnUXfR2j_Qf9PfPNu1uHTaFkKKcQIuNgDYvgYMPWma9L0LfAYhmSYEkQTJYUcV9lu1caQUsT6V4YSM9lmfmwzk21mbxv_BrPyjm4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740907646</pqid></control><display><type>article</type><title>Vascular smooth muscle cell dysfunction in neurodegeneration</title><source>PubMed Central (Open Access)</source><creator>Hayes, Genevieve ; Pinto, Joana ; Sparks, Sierra N. ; Wang, Congxiyu ; Suri, Sana ; Bulte, Daniel P.</creator><creatorcontrib>Hayes, Genevieve ; Pinto, Joana ; Sparks, Sierra N. ; Wang, Congxiyu ; Suri, Sana ; Bulte, Daniel P.</creatorcontrib><description>Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain’s oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo . However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer’s disease, and Parkinson’s disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.</description><identifier>ISSN: 1662-453X</identifier><identifier>ISSN: 1662-4548</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2022.1010164</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>Alzheimer’s disease ; cerebral blood flow ; cerebrovascular reactivity ; dementia ; neurodegeneration ; Neuroscience ; vascular smooth muscle cells</subject><ispartof>Frontiers in neuroscience, 2022-11, Vol.16, p.1010164-1010164</ispartof><rights>Copyright © 2022 Hayes, Pinto, Sparks, Wang, Suri and Bulte. 2022 Hayes, Pinto, Sparks, Wang, Suri and Bulte</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023</citedby><cites>FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684644/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684644/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hayes, Genevieve</creatorcontrib><creatorcontrib>Pinto, Joana</creatorcontrib><creatorcontrib>Sparks, Sierra N.</creatorcontrib><creatorcontrib>Wang, Congxiyu</creatorcontrib><creatorcontrib>Suri, Sana</creatorcontrib><creatorcontrib>Bulte, Daniel P.</creatorcontrib><title>Vascular smooth muscle cell dysfunction in neurodegeneration</title><title>Frontiers in neuroscience</title><description>Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain’s oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo . However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer’s disease, and Parkinson’s disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.</description><subject>Alzheimer’s disease</subject><subject>cerebral blood flow</subject><subject>cerebrovascular reactivity</subject><subject>dementia</subject><subject>neurodegeneration</subject><subject>Neuroscience</subject><subject>vascular smooth muscle cells</subject><issn>1662-453X</issn><issn>1662-4548</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1LxDAQhosouK7-AU89etk1X00aEEHEjwXBi4i3ME2ma5c2WZNW8N_buosoc5hhZnjeYd4sO6dkyXmpL2vf-LRkhLElJWNIcZDNqJRsIQr-dvinPs5OUtoQIlkp2Cy7eoVkhxZinroQ-ve8G5JtMbfYtrn7SvXgbd8Enzc-9zjE4HCNHiNMzdPsqIY24dk-z7OX-7uX28fF0_PD6vbmaWGFKPoF8BpQCUap0q5idaWdLaQCxQupwVpVltJRUaBErbEqlLNQSEKRcgWE8Xm22mFdgI3ZxqaD-GUCNOanEeLaQOyb8Wyjy9qNAlYWlAkKZFJTrHLCcV0zSUbW9Y61HaoOnUXfR2j_Qf9PfPNu1uHTaFkKKcQIuNgDYvgYMPWma9L0LfAYhmSYEkQTJYUcV9lu1caQUsT6V4YSM9lmfmwzk21mbxv_BrPyjm4</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Hayes, Genevieve</creator><creator>Pinto, Joana</creator><creator>Sparks, Sierra N.</creator><creator>Wang, Congxiyu</creator><creator>Suri, Sana</creator><creator>Bulte, Daniel P.</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221110</creationdate><title>Vascular smooth muscle cell dysfunction in neurodegeneration</title><author>Hayes, Genevieve ; Pinto, Joana ; Sparks, Sierra N. ; Wang, Congxiyu ; Suri, Sana ; Bulte, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer’s disease</topic><topic>cerebral blood flow</topic><topic>cerebrovascular reactivity</topic><topic>dementia</topic><topic>neurodegeneration</topic><topic>Neuroscience</topic><topic>vascular smooth muscle cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Genevieve</creatorcontrib><creatorcontrib>Pinto, Joana</creatorcontrib><creatorcontrib>Sparks, Sierra N.</creatorcontrib><creatorcontrib>Wang, Congxiyu</creatorcontrib><creatorcontrib>Suri, Sana</creatorcontrib><creatorcontrib>Bulte, Daniel P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayes, Genevieve</au><au>Pinto, Joana</au><au>Sparks, Sierra N.</au><au>Wang, Congxiyu</au><au>Suri, Sana</au><au>Bulte, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular smooth muscle cell dysfunction in neurodegeneration</atitle><jtitle>Frontiers in neuroscience</jtitle><date>2022-11-10</date><risdate>2022</risdate><volume>16</volume><spage>1010164</spage><epage>1010164</epage><pages>1010164-1010164</pages><issn>1662-453X</issn><issn>1662-4548</issn><eissn>1662-453X</eissn><abstract>Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain’s oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo . However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer’s disease, and Parkinson’s disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fnins.2022.1010164</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-453X
ispartof Frontiers in neuroscience, 2022-11, Vol.16, p.1010164-1010164
issn 1662-453X
1662-4548
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_98fd2fbc651241a0b2fb72bd4d39f260
source PubMed Central (Open Access)
subjects Alzheimer’s disease
cerebral blood flow
cerebrovascular reactivity
dementia
neurodegeneration
Neuroscience
vascular smooth muscle cells
title Vascular smooth muscle cell dysfunction in neurodegeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20smooth%20muscle%20cell%20dysfunction%20in%20neurodegeneration&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Hayes,%20Genevieve&rft.date=2022-11-10&rft.volume=16&rft.spage=1010164&rft.epage=1010164&rft.pages=1010164-1010164&rft.issn=1662-453X&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2022.1010164&rft_dat=%3Cproquest_doaj_%3E2740907646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-a3fae7421179db2fb9dc567a73569acc7886d145e6e99eb57dca5601e137a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740907646&rft_id=info:pmid/&rfr_iscdi=true