Loading…

A Process‐Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services

Terrestrial ecosystems provide multiple services interacting in complex ways. However, most ecosystem services (ESs) models (e.g., InVEST and ARIES) ignored the relationships among ESs. Process‐based models can overcome this limitation, and the integration of ecological models with remote sensing da...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advances in modeling earth systems 2021-06, Vol.13 (6), p.n/a
Main Authors: Niu, Zhongen, He, Honglin, Peng, Shushi, Ren, Xiaoli, Zhang, Li, Gu, Fengxue, Zhu, Gaofeng, Peng, Changhui, Li, Pan, Wang, Junbang, Ge, Rong, Zeng, Na, Zhu, Xiaobo, Lv, Yan, Chang, Qingqing, Xu, Qian, Zhang, Mengyu, Liu, Weihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrestrial ecosystems provide multiple services interacting in complex ways. However, most ecosystem services (ESs) models (e.g., InVEST and ARIES) ignored the relationships among ESs. Process‐based models can overcome this limitation, and the integration of ecological models with remote sensing data could greatly facilitate the investigation of the complex ecological processes. Therefore, based on the Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA) models, we developed a process‐based ES model (CEVSA‐ES) integrating remotely sensed leaf area index to evaluate four important ESs (i.e., productivity provision, carbon sequestration, water retention, and soil retention) at annual timescale in China. Compared to the traditional terrestrial biosphere models, the main innovation of CEVSA‐ES model was the consideration of soil erosion processes and its impact on carbon cycling. The new version also improved the carbon‐water cycle algorithms. Then, the Sobol and DEMC methods that integrated the CEVSA‐ES model with nine flux sites comprising 39 site‐years were used to identify and optimize parameters. Finally, the model using the optimized parameters was validated at 26 field sites comprising 135 site‐years. Simulation results showed good fits with ecosystem processes, explaining 95%, 92%, 76%, and 65% interannual variabilities of gross primary productivity, ecosystem respiration, net ecosystem productivity, and evapotranspiration, respectively. The CEVSA‐ES model performed well for productivity provision and carbon sequestration, which explained 96% and 81% of the spatial‐temporal variations of the observed annual productivity provision and carbon sequestration, respectively. The model also captured the interannual trends of water retention and soil erosion for most sites or basins. Plain Language Summary Terrestrial ecosystems simultaneously provide multiple ecosystem services (ESs). The common environmental drivers and internal mechanisms lead to nonlinear and dynamic relationships among ESs. Assessing the spatiotemporal changes of ESs have recently emerged as an element of ecosystem management and environmental policies. However, appropriate methods linking ESs to biogeochemical and biophysical processes are still lacking. In this study, we developed a process‐based model Carbon and Exchange between Vegetation, Soil, and Atmosphere (CEVSA‐ES) that integrates remote sensing data for evaluating ESs. We first described the model framework and
ISSN:1942-2466
1942-2466
DOI:10.1029/2020MS002451