Loading…

Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks

Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situa...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-07, Vol.23 (15), p.6792
Main Authors: Xu, Weijian, Song, Zhongzhe, Sun, Yanglong, Wang, Yang, Lai, Lianyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3
cites cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3
container_end_page
container_issue 15
container_start_page 6792
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Xu, Weijian
Song, Zhongzhe
Sun, Yanglong
Wang, Yang
Lai, Lianyou
description Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami- distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami- distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.
doi_str_mv 10.3390/s23156792
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760616853</galeid><doaj_id>oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e</doaj_id><sourcerecordid>A760616853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIRB-w4A-gkdjAYorHb69QlFKIVFEJWrbWjec6dZiMU3uGqv--hpSoRV7Yuv7uuT7Wqao3LTlhzJCPmbJWSGXos-qw5ZQ3mlLy_NH5oDrKeU0IZYzpl9UBU0K1QonD6mIO23FK2MxuIWF9ikPG-hJW9aLDYQw-OBhDHOqrHIZV_f1scVr_uMsjbnIdhvonXgc39ZDqbzjexvQrv6peeOgzvn7Yj6urs8-X86_N-cWXxXx23jhBzNiYpeKy4844qQB4R5nxCIIJQoVWS82I51LhUntwkrSdNxyI44J6g-DBs-NqsdPtIqztNoUNpDsbIdi_hZhWFtIYXI_WGCG1lBI6zbhDDdRRcEL7ZWcocixan3Za22m5wc4V4wn6J6JPb4ZwbVfxt20Jp5QKWRTePyikeDNhHu0mZId9DwPGKVuqBWEt40IX9N1_6DpOaSh_VShuWkKJUoU62VErKA7C4GMZ7MrqcBNcHNCHUp8pSWQrtWCl4cOuwaWYc0K_f35L7J-Q2H1ICvv2sd89-S8V7B6Vr7X4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849102077</pqid></control><display><type>article</type><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</creator><creatorcontrib>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</creatorcontrib><description>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami- distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami- distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23156792</identifier><identifier>PMID: 37571575</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Binomial distribution ; capture effect ; Efficiency ; Fading channels ; Identification ; Monte Carlo method ; Probability ; Radio frequency ; Radio frequency identification (RFID) ; RFID ; tag identification ; vehicular networks ; Wireless communications</subject><ispartof>Sensors (Basel, Switzerland), 2023-07, Vol.23 (15), p.6792</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</citedby><cites>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</cites><orcidid>0009-0005-2825-9983 ; 0009-0009-5306-4247 ; 0000-0001-7709-5966 ; 0009-0001-6581-1416 ; 0000-0003-3668-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849102077/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849102077?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37571575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weijian</creatorcontrib><creatorcontrib>Song, Zhongzhe</creatorcontrib><creatorcontrib>Sun, Yanglong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lai, Lianyou</creatorcontrib><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami- distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami- distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Binomial distribution</subject><subject>capture effect</subject><subject>Efficiency</subject><subject>Fading channels</subject><subject>Identification</subject><subject>Monte Carlo method</subject><subject>Probability</subject><subject>Radio frequency</subject><subject>Radio frequency identification (RFID)</subject><subject>RFID</subject><subject>tag identification</subject><subject>vehicular networks</subject><subject>Wireless communications</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIRB-w4A-gkdjAYorHb69QlFKIVFEJWrbWjec6dZiMU3uGqv--hpSoRV7Yuv7uuT7Wqao3LTlhzJCPmbJWSGXos-qw5ZQ3mlLy_NH5oDrKeU0IZYzpl9UBU0K1QonD6mIO23FK2MxuIWF9ikPG-hJW9aLDYQw-OBhDHOqrHIZV_f1scVr_uMsjbnIdhvonXgc39ZDqbzjexvQrv6peeOgzvn7Yj6urs8-X86_N-cWXxXx23jhBzNiYpeKy4844qQB4R5nxCIIJQoVWS82I51LhUntwkrSdNxyI44J6g-DBs-NqsdPtIqztNoUNpDsbIdi_hZhWFtIYXI_WGCG1lBI6zbhDDdRRcEL7ZWcocixan3Za22m5wc4V4wn6J6JPb4ZwbVfxt20Jp5QKWRTePyikeDNhHu0mZId9DwPGKVuqBWEt40IX9N1_6DpOaSh_VShuWkKJUoU62VErKA7C4GMZ7MrqcBNcHNCHUp8pSWQrtWCl4cOuwaWYc0K_f35L7J-Q2H1ICvv2sd89-S8V7B6Vr7X4</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Xu, Weijian</creator><creator>Song, Zhongzhe</creator><creator>Sun, Yanglong</creator><creator>Wang, Yang</creator><creator>Lai, Lianyou</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-2825-9983</orcidid><orcidid>https://orcid.org/0009-0009-5306-4247</orcidid><orcidid>https://orcid.org/0000-0001-7709-5966</orcidid><orcidid>https://orcid.org/0009-0001-6581-1416</orcidid><orcidid>https://orcid.org/0000-0003-3668-6617</orcidid></search><sort><creationdate>20230729</creationdate><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><author>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Binomial distribution</topic><topic>capture effect</topic><topic>Efficiency</topic><topic>Fading channels</topic><topic>Identification</topic><topic>Monte Carlo method</topic><topic>Probability</topic><topic>Radio frequency</topic><topic>Radio frequency identification (RFID)</topic><topic>RFID</topic><topic>tag identification</topic><topic>vehicular networks</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weijian</creatorcontrib><creatorcontrib>Song, Zhongzhe</creatorcontrib><creatorcontrib>Sun, Yanglong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lai, Lianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weijian</au><au>Song, Zhongzhe</au><au>Sun, Yanglong</au><au>Wang, Yang</au><au>Lai, Lianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-07-29</date><risdate>2023</risdate><volume>23</volume><issue>15</issue><spage>6792</spage><pages>6792-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami- distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami- distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37571575</pmid><doi>10.3390/s23156792</doi><orcidid>https://orcid.org/0009-0005-2825-9983</orcidid><orcidid>https://orcid.org/0009-0009-5306-4247</orcidid><orcidid>https://orcid.org/0000-0001-7709-5966</orcidid><orcidid>https://orcid.org/0009-0001-6581-1416</orcidid><orcidid>https://orcid.org/0000-0003-3668-6617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-07, Vol.23 (15), p.6792
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e
source Open Access: PubMed Central; Publicly Available Content Database
subjects Algorithms
Analysis
Binomial distribution
capture effect
Efficiency
Fading channels
Identification
Monte Carlo method
Probability
Radio frequency
Radio frequency identification (RFID)
RFID
tag identification
vehicular networks
Wireless communications
title Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capture-Aware%20Dense%20Tag%20Identification%20Using%20RFID%20Systems%20in%20Vehicular%20Networks&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20Weijian&rft.date=2023-07-29&rft.volume=23&rft.issue=15&rft.spage=6792&rft.pages=6792-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23156792&rft_dat=%3Cgale_doaj_%3EA760616853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849102077&rft_id=info:pmid/37571575&rft_galeid=A760616853&rfr_iscdi=true