Loading…
Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks
Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situa...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-07, Vol.23 (15), p.6792 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3 |
container_end_page | |
container_issue | 15 |
container_start_page | 6792 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Xu, Weijian Song, Zhongzhe Sun, Yanglong Wang, Yang Lai, Lianyou |
description | Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami-
distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami-
distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification. |
doi_str_mv | 10.3390/s23156792 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760616853</galeid><doaj_id>oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e</doaj_id><sourcerecordid>A760616853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIRB-w4A-gkdjAYorHb69QlFKIVFEJWrbWjec6dZiMU3uGqv--hpSoRV7Yuv7uuT7Wqao3LTlhzJCPmbJWSGXos-qw5ZQ3mlLy_NH5oDrKeU0IZYzpl9UBU0K1QonD6mIO23FK2MxuIWF9ikPG-hJW9aLDYQw-OBhDHOqrHIZV_f1scVr_uMsjbnIdhvonXgc39ZDqbzjexvQrv6peeOgzvn7Yj6urs8-X86_N-cWXxXx23jhBzNiYpeKy4844qQB4R5nxCIIJQoVWS82I51LhUntwkrSdNxyI44J6g-DBs-NqsdPtIqztNoUNpDsbIdi_hZhWFtIYXI_WGCG1lBI6zbhDDdRRcEL7ZWcocixan3Za22m5wc4V4wn6J6JPb4ZwbVfxt20Jp5QKWRTePyikeDNhHu0mZId9DwPGKVuqBWEt40IX9N1_6DpOaSh_VShuWkKJUoU62VErKA7C4GMZ7MrqcBNcHNCHUp8pSWQrtWCl4cOuwaWYc0K_f35L7J-Q2H1ICvv2sd89-S8V7B6Vr7X4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849102077</pqid></control><display><type>article</type><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</creator><creatorcontrib>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</creatorcontrib><description>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami-
distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami-
distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23156792</identifier><identifier>PMID: 37571575</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Binomial distribution ; capture effect ; Efficiency ; Fading channels ; Identification ; Monte Carlo method ; Probability ; Radio frequency ; Radio frequency identification (RFID) ; RFID ; tag identification ; vehicular networks ; Wireless communications</subject><ispartof>Sensors (Basel, Switzerland), 2023-07, Vol.23 (15), p.6792</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</citedby><cites>FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</cites><orcidid>0009-0005-2825-9983 ; 0009-0009-5306-4247 ; 0000-0001-7709-5966 ; 0009-0001-6581-1416 ; 0000-0003-3668-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849102077/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849102077?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37571575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weijian</creatorcontrib><creatorcontrib>Song, Zhongzhe</creatorcontrib><creatorcontrib>Sun, Yanglong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lai, Lianyou</creatorcontrib><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami-
distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami-
distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Binomial distribution</subject><subject>capture effect</subject><subject>Efficiency</subject><subject>Fading channels</subject><subject>Identification</subject><subject>Monte Carlo method</subject><subject>Probability</subject><subject>Radio frequency</subject><subject>Radio frequency identification (RFID)</subject><subject>RFID</subject><subject>tag identification</subject><subject>vehicular networks</subject><subject>Wireless communications</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIRB-w4A-gkdjAYorHb69QlFKIVFEJWrbWjec6dZiMU3uGqv--hpSoRV7Yuv7uuT7Wqao3LTlhzJCPmbJWSGXos-qw5ZQ3mlLy_NH5oDrKeU0IZYzpl9UBU0K1QonD6mIO23FK2MxuIWF9ikPG-hJW9aLDYQw-OBhDHOqrHIZV_f1scVr_uMsjbnIdhvonXgc39ZDqbzjexvQrv6peeOgzvn7Yj6urs8-X86_N-cWXxXx23jhBzNiYpeKy4844qQB4R5nxCIIJQoVWS82I51LhUntwkrSdNxyI44J6g-DBs-NqsdPtIqztNoUNpDsbIdi_hZhWFtIYXI_WGCG1lBI6zbhDDdRRcEL7ZWcocixan3Za22m5wc4V4wn6J6JPb4ZwbVfxt20Jp5QKWRTePyikeDNhHu0mZId9DwPGKVuqBWEt40IX9N1_6DpOaSh_VShuWkKJUoU62VErKA7C4GMZ7MrqcBNcHNCHUp8pSWQrtWCl4cOuwaWYc0K_f35L7J-Q2H1ICvv2sd89-S8V7B6Vr7X4</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Xu, Weijian</creator><creator>Song, Zhongzhe</creator><creator>Sun, Yanglong</creator><creator>Wang, Yang</creator><creator>Lai, Lianyou</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-2825-9983</orcidid><orcidid>https://orcid.org/0009-0009-5306-4247</orcidid><orcidid>https://orcid.org/0000-0001-7709-5966</orcidid><orcidid>https://orcid.org/0009-0001-6581-1416</orcidid><orcidid>https://orcid.org/0000-0003-3668-6617</orcidid></search><sort><creationdate>20230729</creationdate><title>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</title><author>Xu, Weijian ; Song, Zhongzhe ; Sun, Yanglong ; Wang, Yang ; Lai, Lianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Binomial distribution</topic><topic>capture effect</topic><topic>Efficiency</topic><topic>Fading channels</topic><topic>Identification</topic><topic>Monte Carlo method</topic><topic>Probability</topic><topic>Radio frequency</topic><topic>Radio frequency identification (RFID)</topic><topic>RFID</topic><topic>tag identification</topic><topic>vehicular networks</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weijian</creatorcontrib><creatorcontrib>Song, Zhongzhe</creatorcontrib><creatorcontrib>Sun, Yanglong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Lai, Lianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weijian</au><au>Song, Zhongzhe</au><au>Sun, Yanglong</au><au>Wang, Yang</au><au>Lai, Lianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-07-29</date><risdate>2023</risdate><volume>23</volume><issue>15</issue><spage>6792</spage><pages>6792-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami-
distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami-
distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37571575</pmid><doi>10.3390/s23156792</doi><orcidid>https://orcid.org/0009-0005-2825-9983</orcidid><orcidid>https://orcid.org/0009-0009-5306-4247</orcidid><orcidid>https://orcid.org/0000-0001-7709-5966</orcidid><orcidid>https://orcid.org/0009-0001-6581-1416</orcidid><orcidid>https://orcid.org/0000-0003-3668-6617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-07, Vol.23 (15), p.6792 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_99568666ad834ce8a2c2ac58fbd92e4e |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Algorithms Analysis Binomial distribution capture effect Efficiency Fading channels Identification Monte Carlo method Probability Radio frequency Radio frequency identification (RFID) RFID tag identification vehicular networks Wireless communications |
title | Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capture-Aware%20Dense%20Tag%20Identification%20Using%20RFID%20Systems%20in%20Vehicular%20Networks&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xu,%20Weijian&rft.date=2023-07-29&rft.volume=23&rft.issue=15&rft.spage=6792&rft.pages=6792-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23156792&rft_dat=%3Cgale_doaj_%3EA760616853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-9b746d4c9c67aa4d239fea53502587b830f467eb8fac601df94a0c452f9eafaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849102077&rft_id=info:pmid/37571575&rft_galeid=A760616853&rfr_iscdi=true |