Loading…

Two-Dimensional Wavenumber Analysis Implemented in Ultrasonic Vector Doppler Method with Focused Transmit Beams

The multi-angle Doppler method was introduced for the estimation of velocity vectors by measuring axial velocities from multiple directions. We have recently reported that the autocorrelation-based velocity vector estimation could be ameliorated significantly by estimating the wavenumbers in two dim...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (24), p.9787
Main Authors: Hasegawa, Hideyuki, Omura, Masaaki, Nagaoka, Ryo, Saito, Kozue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The multi-angle Doppler method was introduced for the estimation of velocity vectors by measuring axial velocities from multiple directions. We have recently reported that the autocorrelation-based velocity vector estimation could be ameliorated significantly by estimating the wavenumbers in two dimensions. Since two-dimensional wavenumber estimation requires a snapshot of an ultrasonic field, the method was first implemented in plane wave imaging. Although plane wave imaging is predominantly useful for examining blood flows at an extremely high temporal resolution, it was reported that the contrast in a B-mode image obtained with a few plane wave emissions was lower than that obtained with focused beams. In this study, the two-dimensional wavenumber analysis was first implemented in a framework with focused transmit beams. The simulations showed that the proposed method achieved an accuracy in velocity estimation comparable to that of the method with plane wave imaging. Furthermore, the performances of the methods implemented in focused beam and plane wave imaging were compared by measuring human common carotid arteries in vivo. Image contrasts were analyzed in normal and clutter-filtered B-mode images. The method with focused beam imaging achieved a better contrast in normal B-mode imaging, and similar velocity magnitudes and angles were obtained by both the methods with focused beam and plane wave imaging. In contrast, the method with plane wave imaging gave a better contrast in a clutter-filtered B-mode image and smaller variances in velocity magnitudes than those with focused beams.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22249787