Loading…

A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data

Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this re...

Full description

Saved in:
Bibliographic Details
Published in:G3 : genes - genomes - genetics 2020-11, Vol.10 (11), p.4177-4190
Main Authors: Montesinos-López, Osval Antonio, Montesinos-López, José Cricelio, Singh, Pawan, Lozano-Ramirez, Nerida, Barrón-López, Alberto, Montesinos-López, Abelardo, Crossa, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073
cites cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073
container_end_page 4190
container_issue 11
container_start_page 4177
container_title G3 : genes - genomes - genetics
container_volume 10
creator Montesinos-López, Osval Antonio
Montesinos-López, José Cricelio
Singh, Pawan
Lozano-Ramirez, Nerida
Barrón-López, Alberto
Montesinos-López, Abelardo
Crossa, José
description Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.
doi_str_mv 10.1534/g3.120.401631
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/g3.120.401631</oup_id><doaj_id>oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107</doaj_id><sourcerecordid>2443524458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</originalsourceid><addsrcrecordid>eNqFkb1PHDEQxS2UCBChTBu5TLMXf--6iYQOQpAOQZHU1qzX3hjtrS-2F4n_HocjBKq4GI_Gb37P0kPoIyUrKrn4MvIVZWQlCFWcHqBjRhVpaMfVu1f9ETrN-Y7UI6VSQh2iI840r0v6GN2c4etlKuEeUoDi8G0MOccZnzu3wxsHaQ7ziK_j4CbsY8KXbo7bYPFtckOwJVRp9Hgdl7ngcyjwAb33MGV3-nyfoJ_fLn6svzebm8ur9dmmsaJTpbHMdz1loEGBVUA0UW3vOiJa4YUF6FjPh1Z2nZBaEdv2YtBeyrrbs8GTlp-gqz13iHBndilsIT2YCME8DWIaDaQS7OSM1i0HrZUTvJpzAbz1oC1rLVOUPrG-7lm7pd-6wbq5JJjeQN--zOGXGeO9aZVgmrEK-PwMSPH34nIx25CtmyaYXVyyYUJwWYvsqrTZS22KOSfnX2woMX8yNSM3NVOzz7TqP73-24v6b4L_vOOy-w_rEcAJpsk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443524458</pqid></control><display><type>article</type><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><source>PubMed (Medline)</source><source>Oxford Academic Journals (Open Access)</source><creator>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</creator><creatorcontrib>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</creatorcontrib><description>Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1534/g3.120.401631</identifier><identifier>PMID: 32934019</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>count data of wheat lines ; Genomic Prediction ; genomic selection and genomic prediction ; genpred ; multivariate poisson deep neural network ; poisson regression models ; shared data resources ; univariate poisson deep neural network</subject><ispartof>G3 : genes - genomes - genetics, 2020-11, Vol.10 (11), p.4177-4190</ispartof><rights>Copyright © 2020 Montesinos-Lopez et al. 2020</rights><rights>Copyright © 2020 Montesinos-Lopez et al.</rights><rights>Copyright © 2020 Montesinos-Lopez 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</citedby><cites>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</cites><orcidid>0000-0001-9429-5855 ; 0000-0002-3973-6547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642922/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642922/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32934019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montesinos-López, Osval Antonio</creatorcontrib><creatorcontrib>Montesinos-López, José Cricelio</creatorcontrib><creatorcontrib>Singh, Pawan</creatorcontrib><creatorcontrib>Lozano-Ramirez, Nerida</creatorcontrib><creatorcontrib>Barrón-López, Alberto</creatorcontrib><creatorcontrib>Montesinos-López, Abelardo</creatorcontrib><creatorcontrib>Crossa, José</creatorcontrib><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</description><subject>count data of wheat lines</subject><subject>Genomic Prediction</subject><subject>genomic selection and genomic prediction</subject><subject>genpred</subject><subject>multivariate poisson deep neural network</subject><subject>poisson regression models</subject><subject>shared data resources</subject><subject>univariate poisson deep neural network</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkb1PHDEQxS2UCBChTBu5TLMXf--6iYQOQpAOQZHU1qzX3hjtrS-2F4n_HocjBKq4GI_Gb37P0kPoIyUrKrn4MvIVZWQlCFWcHqBjRhVpaMfVu1f9ETrN-Y7UI6VSQh2iI840r0v6GN2c4etlKuEeUoDi8G0MOccZnzu3wxsHaQ7ziK_j4CbsY8KXbo7bYPFtckOwJVRp9Hgdl7ngcyjwAb33MGV3-nyfoJ_fLn6svzebm8ur9dmmsaJTpbHMdz1loEGBVUA0UW3vOiJa4YUF6FjPh1Z2nZBaEdv2YtBeyrrbs8GTlp-gqz13iHBndilsIT2YCME8DWIaDaQS7OSM1i0HrZUTvJpzAbz1oC1rLVOUPrG-7lm7pd-6wbq5JJjeQN--zOGXGeO9aZVgmrEK-PwMSPH34nIx25CtmyaYXVyyYUJwWYvsqrTZS22KOSfnX2woMX8yNSM3NVOzz7TqP73-24v6b4L_vOOy-w_rEcAJpsk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Montesinos-López, Osval Antonio</creator><creator>Montesinos-López, José Cricelio</creator><creator>Singh, Pawan</creator><creator>Lozano-Ramirez, Nerida</creator><creator>Barrón-López, Alberto</creator><creator>Montesinos-López, Abelardo</creator><creator>Crossa, José</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-3973-6547</orcidid></search><sort><creationdate>20201101</creationdate><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><author>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>count data of wheat lines</topic><topic>Genomic Prediction</topic><topic>genomic selection and genomic prediction</topic><topic>genpred</topic><topic>multivariate poisson deep neural network</topic><topic>poisson regression models</topic><topic>shared data resources</topic><topic>univariate poisson deep neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montesinos-López, Osval Antonio</creatorcontrib><creatorcontrib>Montesinos-López, José Cricelio</creatorcontrib><creatorcontrib>Singh, Pawan</creatorcontrib><creatorcontrib>Lozano-Ramirez, Nerida</creatorcontrib><creatorcontrib>Barrón-López, Alberto</creatorcontrib><creatorcontrib>Montesinos-López, Abelardo</creatorcontrib><creatorcontrib>Crossa, José</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montesinos-López, Osval Antonio</au><au>Montesinos-López, José Cricelio</au><au>Singh, Pawan</au><au>Lozano-Ramirez, Nerida</au><au>Barrón-López, Alberto</au><au>Montesinos-López, Abelardo</au><au>Crossa, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>4177</spage><epage>4190</epage><pages>4177-4190</pages><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32934019</pmid><doi>10.1534/g3.120.401631</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-3973-6547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-1836
ispartof G3 : genes - genomes - genetics, 2020-11, Vol.10 (11), p.4177-4190
issn 2160-1836
2160-1836
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107
source PubMed (Medline); Oxford Academic Journals (Open Access)
subjects count data of wheat lines
Genomic Prediction
genomic selection and genomic prediction
genpred
multivariate poisson deep neural network
poisson regression models
shared data resources
univariate poisson deep neural network
title A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multivariate%20Poisson%20Deep%20Learning%20Model%20for%20Genomic%20Prediction%20of%20Count%20Data&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Montesinos-L%C3%B3pez,%20Osval%20Antonio&rft.date=2020-11-01&rft.volume=10&rft.issue=11&rft.spage=4177&rft.epage=4190&rft.pages=4177-4190&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1534/g3.120.401631&rft_dat=%3Cproquest_doaj_%3E2443524458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443524458&rft_id=info:pmid/32934019&rft_oup_id=10.1534/g3.120.401631&rfr_iscdi=true