Loading…
A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data
Abstract The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this re...
Saved in:
Published in: | G3 : genes - genomes - genetics 2020-11, Vol.10 (11), p.4177-4190 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073 |
container_end_page | 4190 |
container_issue | 11 |
container_start_page | 4177 |
container_title | G3 : genes - genomes - genetics |
container_volume | 10 |
creator | Montesinos-López, Osval Antonio Montesinos-López, José Cricelio Singh, Pawan Lozano-Ramirez, Nerida Barrón-López, Alberto Montesinos-López, Abelardo Crossa, José |
description | Abstract
The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data. |
doi_str_mv | 10.1534/g3.120.401631 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/g3.120.401631</oup_id><doaj_id>oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107</doaj_id><sourcerecordid>2443524458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</originalsourceid><addsrcrecordid>eNqFkb1PHDEQxS2UCBChTBu5TLMXf--6iYQOQpAOQZHU1qzX3hjtrS-2F4n_HocjBKq4GI_Gb37P0kPoIyUrKrn4MvIVZWQlCFWcHqBjRhVpaMfVu1f9ETrN-Y7UI6VSQh2iI840r0v6GN2c4etlKuEeUoDi8G0MOccZnzu3wxsHaQ7ziK_j4CbsY8KXbo7bYPFtckOwJVRp9Hgdl7ngcyjwAb33MGV3-nyfoJ_fLn6svzebm8ur9dmmsaJTpbHMdz1loEGBVUA0UW3vOiJa4YUF6FjPh1Z2nZBaEdv2YtBeyrrbs8GTlp-gqz13iHBndilsIT2YCME8DWIaDaQS7OSM1i0HrZUTvJpzAbz1oC1rLVOUPrG-7lm7pd-6wbq5JJjeQN--zOGXGeO9aZVgmrEK-PwMSPH34nIx25CtmyaYXVyyYUJwWYvsqrTZS22KOSfnX2woMX8yNSM3NVOzz7TqP73-24v6b4L_vOOy-w_rEcAJpsk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443524458</pqid></control><display><type>article</type><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><source>PubMed (Medline)</source><source>Oxford Academic Journals (Open Access)</source><creator>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</creator><creatorcontrib>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</creatorcontrib><description>Abstract
The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1534/g3.120.401631</identifier><identifier>PMID: 32934019</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>count data of wheat lines ; Genomic Prediction ; genomic selection and genomic prediction ; genpred ; multivariate poisson deep neural network ; poisson regression models ; shared data resources ; univariate poisson deep neural network</subject><ispartof>G3 : genes - genomes - genetics, 2020-11, Vol.10 (11), p.4177-4190</ispartof><rights>Copyright © 2020 Montesinos-Lopez et al. 2020</rights><rights>Copyright © 2020 Montesinos-Lopez et al.</rights><rights>Copyright © 2020 Montesinos-Lopez 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</citedby><cites>FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</cites><orcidid>0000-0001-9429-5855 ; 0000-0002-3973-6547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642922/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642922/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32934019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montesinos-López, Osval Antonio</creatorcontrib><creatorcontrib>Montesinos-López, José Cricelio</creatorcontrib><creatorcontrib>Singh, Pawan</creatorcontrib><creatorcontrib>Lozano-Ramirez, Nerida</creatorcontrib><creatorcontrib>Barrón-López, Alberto</creatorcontrib><creatorcontrib>Montesinos-López, Abelardo</creatorcontrib><creatorcontrib>Crossa, José</creatorcontrib><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract
The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</description><subject>count data of wheat lines</subject><subject>Genomic Prediction</subject><subject>genomic selection and genomic prediction</subject><subject>genpred</subject><subject>multivariate poisson deep neural network</subject><subject>poisson regression models</subject><subject>shared data resources</subject><subject>univariate poisson deep neural network</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkb1PHDEQxS2UCBChTBu5TLMXf--6iYQOQpAOQZHU1qzX3hjtrS-2F4n_HocjBKq4GI_Gb37P0kPoIyUrKrn4MvIVZWQlCFWcHqBjRhVpaMfVu1f9ETrN-Y7UI6VSQh2iI840r0v6GN2c4etlKuEeUoDi8G0MOccZnzu3wxsHaQ7ziK_j4CbsY8KXbo7bYPFtckOwJVRp9Hgdl7ngcyjwAb33MGV3-nyfoJ_fLn6svzebm8ur9dmmsaJTpbHMdz1loEGBVUA0UW3vOiJa4YUF6FjPh1Z2nZBaEdv2YtBeyrrbs8GTlp-gqz13iHBndilsIT2YCME8DWIaDaQS7OSM1i0HrZUTvJpzAbz1oC1rLVOUPrG-7lm7pd-6wbq5JJjeQN--zOGXGeO9aZVgmrEK-PwMSPH34nIx25CtmyaYXVyyYUJwWYvsqrTZS22KOSfnX2woMX8yNSM3NVOzz7TqP73-24v6b4L_vOOy-w_rEcAJpsk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Montesinos-López, Osval Antonio</creator><creator>Montesinos-López, José Cricelio</creator><creator>Singh, Pawan</creator><creator>Lozano-Ramirez, Nerida</creator><creator>Barrón-López, Alberto</creator><creator>Montesinos-López, Abelardo</creator><creator>Crossa, José</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-3973-6547</orcidid></search><sort><creationdate>20201101</creationdate><title>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</title><author>Montesinos-López, Osval Antonio ; Montesinos-López, José Cricelio ; Singh, Pawan ; Lozano-Ramirez, Nerida ; Barrón-López, Alberto ; Montesinos-López, Abelardo ; Crossa, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>count data of wheat lines</topic><topic>Genomic Prediction</topic><topic>genomic selection and genomic prediction</topic><topic>genpred</topic><topic>multivariate poisson deep neural network</topic><topic>poisson regression models</topic><topic>shared data resources</topic><topic>univariate poisson deep neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montesinos-López, Osval Antonio</creatorcontrib><creatorcontrib>Montesinos-López, José Cricelio</creatorcontrib><creatorcontrib>Singh, Pawan</creatorcontrib><creatorcontrib>Lozano-Ramirez, Nerida</creatorcontrib><creatorcontrib>Barrón-López, Alberto</creatorcontrib><creatorcontrib>Montesinos-López, Abelardo</creatorcontrib><creatorcontrib>Crossa, José</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montesinos-López, Osval Antonio</au><au>Montesinos-López, José Cricelio</au><au>Singh, Pawan</au><au>Lozano-Ramirez, Nerida</au><au>Barrón-López, Alberto</au><au>Montesinos-López, Abelardo</au><au>Crossa, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>4177</spage><epage>4190</epage><pages>4177-4190</pages><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract
The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables). Since there is a lack of efficient methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously. The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output layer, the exponential activation function was used for producing outputs on the same scale of counts. The proposed MPDN model was compared to conventional generalized Poisson regression models and univariate Poisson deep learning models in two experimental data sets of count data. We found that the proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in terms of prediction, the univariate generalized Poisson regression models. All deep learning models were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these models on moderate and large data sets, which is a significant advantage over previous GS models for multivariate count data.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32934019</pmid><doi>10.1534/g3.120.401631</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9429-5855</orcidid><orcidid>https://orcid.org/0000-0002-3973-6547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-1836 |
ispartof | G3 : genes - genomes - genetics, 2020-11, Vol.10 (11), p.4177-4190 |
issn | 2160-1836 2160-1836 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9973a996e43c4834a37fa9c27c261107 |
source | PubMed (Medline); Oxford Academic Journals (Open Access) |
subjects | count data of wheat lines Genomic Prediction genomic selection and genomic prediction genpred multivariate poisson deep neural network poisson regression models shared data resources univariate poisson deep neural network |
title | A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multivariate%20Poisson%20Deep%20Learning%20Model%20for%20Genomic%20Prediction%20of%20Count%20Data&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Montesinos-L%C3%B3pez,%20Osval%20Antonio&rft.date=2020-11-01&rft.volume=10&rft.issue=11&rft.spage=4177&rft.epage=4190&rft.pages=4177-4190&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1534/g3.120.401631&rft_dat=%3Cproquest_doaj_%3E2443524458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c2f8b12a9a6ac6a09067be80474f4caa82b3d758845960c7b4d9f55486b2df073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443524458&rft_id=info:pmid/32934019&rft_oup_id=10.1534/g3.120.401631&rfr_iscdi=true |