Loading…

Characteristics and Seasonal Variations of Carbonaceous Species in PM2.5 in Taiyuan, China

Seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied in Taiyuan from 2009 to 2010. PM2.5 samples were collected by pre-baked quartz filters with high-volume air sampler, and then OC and EC were analyzed by thermal/optical reflectance method. The annual averag...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2015-06, Vol.6 (6), p.850-862
Main Authors: He, Qiusheng, Guo, Wendi, Zhang, Guixiang, Yan, Yulong, Chen, Laiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied in Taiyuan from 2009 to 2010. PM2.5 samples were collected by pre-baked quartz filters with high-volume air sampler, and then OC and EC were analyzed by thermal/optical reflectance method. The annual average concentrations of PM2.5, OC and EC were 220.2, 37.4 and 19.6 µg/m3 respectively, which were higher than those in most regions in China. Total carbonaceous aerosol (TCA) accounted for more than one third of the total PM2.5 mass. The levels of PM2.5, OC and EC were the highest in winter, followed by spring, fall and summer. OC and EC were well correlated in summer compared with other seasons, indicating the presence of other additional sources such as biomass burning in fall, coal combustion for heating in winter and dust in spring. Higher OC/EC ratios in winter might be primarily attributed to the significant increase of direct emission of OC as a result of coal and biomass combustion, and also cooling effect of carbonaceous aerosols due to low temperature and stagnated atmospheric condition. These results showed that the pollution of carbonaceous particles in Taiyuan was serious, and might be an inducing factor of dust haze, especially in winter.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos6060850