Loading…

Heterogeneity and Chemical Reactivity of the Remote Troposphere Defined By Aircraft Measurements - Corrected

The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data s...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2023-01, Vol.23 (1), p.99-117
Main Authors: Guo, Hao, Flynn, Clare M, Prather, Michael J, Strode, Sarah A, Steenrod, Stephen D, Emmons, Louisa, Lacey, Forrest, Lamarque, Jean-Francois, Fiore, Arlene M, Correa, Gus, Murray, Lee T, Wolfe, Glenn M, Clair, Jason Michael St, Kim, Michelle, Crounse, John, Diskin, Glenn, Digangi, Joshua, Daube, Bruce C, Commane, Roisin, McKain, Kathryn, Peischl, Jeff, Ryerson, Thomas B, Thompson, Chelsea, Hanisco, Thomas F, Blake, Donald, Blake, Nicola J, Apel, Eric C, Hornbrook, Rebecca S, Elkins, James W, Hintsa, Eric J, Moore, Fred L, Wofsy, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O3 and CH4 (O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetyl nitrate, and other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O3 and CH4 photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom 10 s data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find generally good agreement with the reactivity rates for O3 and CH4. Models distinctly underestimate O3 production below 2 km relative to the mid-troposphere, and this can be traced to lower NOx levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation.
ISSN:1680-7316
1680-7324
1680-7324
DOI:10.5194/acp-23-99-2023