Loading…

Knowledge extraction from pointer movements and its application to detect uncertainty

Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2021-01, Vol.7 (1), p.e05873-e05873, Article e05873
Main Authors: Cepeda, Catia, Dias, Maria Camila, Rindlisbacher, Dina, Gamboa, Hugo, Cheetham, Marcus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c481t-abf5a8516e2dcd8d2bdcfae474b838f7b957eed4c1f0f71d5114940f1085ae5a3
container_end_page e05873
container_issue 1
container_start_page e05873
container_title Heliyon
container_volume 7
creator Cepeda, Catia
Dias, Maria Camila
Rindlisbacher, Dina
Gamboa, Hugo
Cheetham, Marcus
description Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys. In two studies, we identified a set of pointer features and movement patterns and showed that these can be easily distinguished. In a third study, we explored the feasibility of using patterns of interactive pointer movements, or micro-behaviours, to detect response uncertainty. Using logistic regression and k-fold cross-validation in model training and testing, the uncertainty model achieved an estimated performance accuracy of 81%. These findings suggest that micro-behaviours provide a promising approach toward developing a better understanding of the relationship between the dynamics of pointer movements and underlying perceptual, cognitive and affective psychological mechanisms. Human-computer interaction; Pointer-tracking; Mouse movement dynamics; Decision uncertainty; On-line survey; Spatio-temporal features; Machine learning
doi_str_mv 10.1016/j.heliyon.2020.e05873
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_99b635a4112c4510abfa4c2268ec10a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844020327158</els_id><doaj_id>oai_doaj_org_article_99b635a4112c4510abfa4c2268ec10a7</doaj_id><sourcerecordid>2486155854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-abf5a8516e2dcd8d2bdcfae474b838f7b957eed4c1f0f71d5114940f1085ae5a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEolXpTwBlyWYGP2NnA0IVj4pKbOjacuzrqUeJHWzPlPn3eJqhalesrh_nnmPfr2neYrTGCHcftus7GP0hhjVBBK0BcSnoi-acMMRXkjH08sn6rLnMeYsQwlx2vaCvmzNKOSUdFefN7Y8Q70ewG2jhT0naFB9D61Kc2jn6UCC1U9zDBKHkVgfb-mOd59Eb_SAtsbVQwJR2FwykomvT4U3zyukxw-WpXjS3X7_8uvq-uvn57frq883KMInLSg-Oa8lxB8QaKy0ZrHEamGCDpNKJoecCwDKDHXICW44x6xlyGEmugWt60VwvvjbqrZqTn3Q6qKi9ejiIaaN0Kt6MoPp-6CjXDGNiGMeoZmtmCOkkmLoT1evj4jXvhgmsqT9Oenxm-vwm-Du1iXslJOkxPxq8Pxmk-HsHuajJZwPjqAPEXVaEyQ5zLjmrUr5ITYo5J3CPMRipI2G1VSfC6khYLYRr37unb3zs-sezCj4tAqhT33tIKhsPFYz1qTKqY_H_ifgLfMu9RQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486155854</pqid></control><display><type>article</type><title>Knowledge extraction from pointer movements and its application to detect uncertainty</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Cepeda, Catia ; Dias, Maria Camila ; Rindlisbacher, Dina ; Gamboa, Hugo ; Cheetham, Marcus</creator><creatorcontrib>Cepeda, Catia ; Dias, Maria Camila ; Rindlisbacher, Dina ; Gamboa, Hugo ; Cheetham, Marcus</creatorcontrib><description>Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys. In two studies, we identified a set of pointer features and movement patterns and showed that these can be easily distinguished. In a third study, we explored the feasibility of using patterns of interactive pointer movements, or micro-behaviours, to detect response uncertainty. Using logistic regression and k-fold cross-validation in model training and testing, the uncertainty model achieved an estimated performance accuracy of 81%. These findings suggest that micro-behaviours provide a promising approach toward developing a better understanding of the relationship between the dynamics of pointer movements and underlying perceptual, cognitive and affective psychological mechanisms. Human-computer interaction; Pointer-tracking; Mouse movement dynamics; Decision uncertainty; On-line survey; Spatio-temporal features; Machine learning</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2020.e05873</identifier><identifier>PMID: 33532637</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Decision uncertainty ; Human-computer interaction ; Machine learning ; Mouse movement dynamics ; On-line survey ; Pointer-tracking ; Spatio-temporal features</subject><ispartof>Heliyon, 2021-01, Vol.7 (1), p.e05873-e05873, Article e05873</ispartof><rights>2020</rights><rights>2020 Published by Elsevier Ltd.</rights><rights>2020 Published by Elsevier Ltd. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c481t-abf5a8516e2dcd8d2bdcfae474b838f7b957eed4c1f0f71d5114940f1085ae5a3</cites><orcidid>0000-0002-1055-3923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829157/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844020327158$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33532637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cepeda, Catia</creatorcontrib><creatorcontrib>Dias, Maria Camila</creatorcontrib><creatorcontrib>Rindlisbacher, Dina</creatorcontrib><creatorcontrib>Gamboa, Hugo</creatorcontrib><creatorcontrib>Cheetham, Marcus</creatorcontrib><title>Knowledge extraction from pointer movements and its application to detect uncertainty</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys. In two studies, we identified a set of pointer features and movement patterns and showed that these can be easily distinguished. In a third study, we explored the feasibility of using patterns of interactive pointer movements, or micro-behaviours, to detect response uncertainty. Using logistic regression and k-fold cross-validation in model training and testing, the uncertainty model achieved an estimated performance accuracy of 81%. These findings suggest that micro-behaviours provide a promising approach toward developing a better understanding of the relationship between the dynamics of pointer movements and underlying perceptual, cognitive and affective psychological mechanisms. Human-computer interaction; Pointer-tracking; Mouse movement dynamics; Decision uncertainty; On-line survey; Spatio-temporal features; Machine learning</description><subject>Decision uncertainty</subject><subject>Human-computer interaction</subject><subject>Machine learning</subject><subject>Mouse movement dynamics</subject><subject>On-line survey</subject><subject>Pointer-tracking</subject><subject>Spatio-temporal features</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtv1DAUhSMEolXpTwBlyWYGP2NnA0IVj4pKbOjacuzrqUeJHWzPlPn3eJqhalesrh_nnmPfr2neYrTGCHcftus7GP0hhjVBBK0BcSnoi-acMMRXkjH08sn6rLnMeYsQwlx2vaCvmzNKOSUdFefN7Y8Q70ewG2jhT0naFB9D61Kc2jn6UCC1U9zDBKHkVgfb-mOd59Eb_SAtsbVQwJR2FwykomvT4U3zyukxw-WpXjS3X7_8uvq-uvn57frq883KMInLSg-Oa8lxB8QaKy0ZrHEamGCDpNKJoecCwDKDHXICW44x6xlyGEmugWt60VwvvjbqrZqTn3Q6qKi9ejiIaaN0Kt6MoPp-6CjXDGNiGMeoZmtmCOkkmLoT1evj4jXvhgmsqT9Oenxm-vwm-Du1iXslJOkxPxq8Pxmk-HsHuajJZwPjqAPEXVaEyQ5zLjmrUr5ITYo5J3CPMRipI2G1VSfC6khYLYRr37unb3zs-sezCj4tAqhT33tIKhsPFYz1qTKqY_H_ifgLfMu9RQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cepeda, Catia</creator><creator>Dias, Maria Camila</creator><creator>Rindlisbacher, Dina</creator><creator>Gamboa, Hugo</creator><creator>Cheetham, Marcus</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1055-3923</orcidid></search><sort><creationdate>20210101</creationdate><title>Knowledge extraction from pointer movements and its application to detect uncertainty</title><author>Cepeda, Catia ; Dias, Maria Camila ; Rindlisbacher, Dina ; Gamboa, Hugo ; Cheetham, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-abf5a8516e2dcd8d2bdcfae474b838f7b957eed4c1f0f71d5114940f1085ae5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decision uncertainty</topic><topic>Human-computer interaction</topic><topic>Machine learning</topic><topic>Mouse movement dynamics</topic><topic>On-line survey</topic><topic>Pointer-tracking</topic><topic>Spatio-temporal features</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cepeda, Catia</creatorcontrib><creatorcontrib>Dias, Maria Camila</creatorcontrib><creatorcontrib>Rindlisbacher, Dina</creatorcontrib><creatorcontrib>Gamboa, Hugo</creatorcontrib><creatorcontrib>Cheetham, Marcus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cepeda, Catia</au><au>Dias, Maria Camila</au><au>Rindlisbacher, Dina</au><au>Gamboa, Hugo</au><au>Cheetham, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge extraction from pointer movements and its application to detect uncertainty</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>e05873</spage><epage>e05873</epage><pages>e05873-e05873</pages><artnum>e05873</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys. In two studies, we identified a set of pointer features and movement patterns and showed that these can be easily distinguished. In a third study, we explored the feasibility of using patterns of interactive pointer movements, or micro-behaviours, to detect response uncertainty. Using logistic regression and k-fold cross-validation in model training and testing, the uncertainty model achieved an estimated performance accuracy of 81%. These findings suggest that micro-behaviours provide a promising approach toward developing a better understanding of the relationship between the dynamics of pointer movements and underlying perceptual, cognitive and affective psychological mechanisms. Human-computer interaction; Pointer-tracking; Mouse movement dynamics; Decision uncertainty; On-line survey; Spatio-temporal features; Machine learning</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33532637</pmid><doi>10.1016/j.heliyon.2020.e05873</doi><orcidid>https://orcid.org/0000-0002-1055-3923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2021-01, Vol.7 (1), p.e05873-e05873, Article e05873
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_99b635a4112c4510abfa4c2268ec10a7
source ScienceDirect Journals; PubMed Central
subjects Decision uncertainty
Human-computer interaction
Machine learning
Mouse movement dynamics
On-line survey
Pointer-tracking
Spatio-temporal features
title Knowledge extraction from pointer movements and its application to detect uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20extraction%20from%20pointer%20movements%20and%20its%20application%20to%20detect%20uncertainty&rft.jtitle=Heliyon&rft.au=Cepeda,%20Catia&rft.date=2021-01-01&rft.volume=7&rft.issue=1&rft.spage=e05873&rft.epage=e05873&rft.pages=e05873-e05873&rft.artnum=e05873&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2020.e05873&rft_dat=%3Cproquest_doaj_%3E2486155854%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-abf5a8516e2dcd8d2bdcfae474b838f7b957eed4c1f0f71d5114940f1085ae5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486155854&rft_id=info:pmid/33532637&rfr_iscdi=true