Loading…

The Effect of Superpositions on the Planetary Nebula Luminosity Function

Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [O iii ] λ 5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2023-06, Vol.950 (1), p.59
Main Authors: Chase, Owen, Ciardullo, Robin, Roth, Martin M., Jacoby, George H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [O iii ] λ 5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon and describe the proper procedures for deriving PNLF distances when object blends are a possibility. We apply our technique to two objects: a model Virgo-distance elliptical galaxy observed through a narrowband interference filter, and the Fornax lenticular galaxy NGC 1380 surveyed with the MUSE integral-field unit spectrograph. Our analyses show that even when the most likely distance to a galaxy is unaffected by the possible presence of PN superpositions, the resultant value will still be biased toward too small a distance due to the asymmetrical nature of the error bars. We discuss the future of the PNLF in an era where current ground-based instrumentation can push the technique to distances beyond ∼35 Mpc.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acc9bd