Loading…

Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey

Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR ima...

Full description

Saved in:
Bibliographic Details
Published in:PLOS global public health 2022-01, Vol.2 (11), p.e0001272
Main Authors: Brenda Mungai, Jane Ong'angò, Chu Chang Ku, Marc Y R Henrion, Ben Morton, Elizabeth Joekes, Elizabeth Onyango, Richard Kiplimo, Dickson Kirathe, Enos Masini, Joseph Sitienei, Veronica Manduku, Beatrice Mugi, Stephen Bertel Squire, Peter MacPherson, IMPALA Consortium
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page e0001272
container_title PLOS global public health
container_volume 2
creator Brenda Mungai
Jane Ong'angò
Chu Chang Ku
Marc Y R Henrion
Ben Morton
Elizabeth Joekes
Elizabeth Onyango
Richard Kiplimo
Dickson Kirathe
Enos Masini
Joseph Sitienei
Veronica Manduku
Beatrice Mugi
Stephen Bertel Squire
Peter MacPherson
IMPALA Consortium
description Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR images from participants in the 2016 Kenya National TB Prevalence Survey were evaluated using CAD4TBv6 (Delft Imaging), giving a probabilistic score for pulmonary TB ranging from 0 (low probability) to 99 (high probability). We constructed a Bayesian latent class model to estimate the accuracy of CAD4TBv6 screening compared to bacteriologically-confirmed TB across CAD4TBv6 threshold cut-offs, incorporating data on Clinical Officer CXR interpretation, participant demographics (age, sex, TB symptoms, previous TB history), and sputum results. We compared model-estimated sensitivity and specificity of CAD4TBv6 to optimum and minimum TPPs. Of 63,050 prevalence survey participants, 61,848 (98%) had analysable CXR images, and 8,966 (14.5%) underwent sputum bacteriological testing; 298 had bacteriologically-confirmed pulmonary TB. Median CAD4TBv6 scores for participants with bacteriologically-confirmed TB were significantly higher (72, IQR: 58-82.75) compared to participants with bacteriologically-negative sputum results (49, IQR: 44-57, p
doi_str_mv 10.1371/journal.pgph.0001272
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb</doaj_id><sourcerecordid>oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb3</originalsourceid><addsrcrecordid>eNqtjs1KAzEUhYMgWLRv4OK-wNRkfpqOOxFFsYhgF-6GO-mdNmUmGW6SwjyI72sVFz6AqwPn4zscIa6VXKhCq5uDT-ywX4y7cb-QUqpc52diluulzopCVxdiHsLhBPKVkrouZuLzzpjEaCbwHRg_jCkSZ2i3tAWzpxDhI2OcwLpvOiRn45S1GE44ppbYpN4HGyAYJnLW7W5hTSF4F6BjP0DcE-RSLeGF3ITwitH600PY_JXfmI7YkzME74mPNF2J8w77QPPfvBTPjw-b-6ds6_HQjGwH5KnxaJufwvOuQY7W9NTUNdW6ymlllqosi6pF01ZUlV0tiaRpi__c-gL8X3si</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey</title><source>PubMed Central</source><creator>Brenda Mungai ; Jane Ong'angò ; Chu Chang Ku ; Marc Y R Henrion ; Ben Morton ; Elizabeth Joekes ; Elizabeth Onyango ; Richard Kiplimo ; Dickson Kirathe ; Enos Masini ; Joseph Sitienei ; Veronica Manduku ; Beatrice Mugi ; Stephen Bertel Squire ; Peter MacPherson ; IMPALA Consortium</creator><creatorcontrib>Brenda Mungai ; Jane Ong'angò ; Chu Chang Ku ; Marc Y R Henrion ; Ben Morton ; Elizabeth Joekes ; Elizabeth Onyango ; Richard Kiplimo ; Dickson Kirathe ; Enos Masini ; Joseph Sitienei ; Veronica Manduku ; Beatrice Mugi ; Stephen Bertel Squire ; Peter MacPherson ; IMPALA Consortium</creatorcontrib><description>Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR images from participants in the 2016 Kenya National TB Prevalence Survey were evaluated using CAD4TBv6 (Delft Imaging), giving a probabilistic score for pulmonary TB ranging from 0 (low probability) to 99 (high probability). We constructed a Bayesian latent class model to estimate the accuracy of CAD4TBv6 screening compared to bacteriologically-confirmed TB across CAD4TBv6 threshold cut-offs, incorporating data on Clinical Officer CXR interpretation, participant demographics (age, sex, TB symptoms, previous TB history), and sputum results. We compared model-estimated sensitivity and specificity of CAD4TBv6 to optimum and minimum TPPs. Of 63,050 prevalence survey participants, 61,848 (98%) had analysable CXR images, and 8,966 (14.5%) underwent sputum bacteriological testing; 298 had bacteriologically-confirmed pulmonary TB. Median CAD4TBv6 scores for participants with bacteriologically-confirmed TB were significantly higher (72, IQR: 58-82.75) compared to participants with bacteriologically-negative sputum results (49, IQR: 44-57, p&lt;0.0001). CAD4TBv6 met the optimum TPP; with the threshold set to achieve a mean sensitivity of 95% (optimum TPP), specificity was 83.3%, (95% credible interval [CrI]: 83.0%-83.7%, CAD4TBv6 threshold: 55). There was considerable variation in accuracy by participant characteristics, with older individuals and those with previous TB having lowest specificity. CAD4TBv6 met the optimal TPP for TB community screening. To optimise screening accuracy and efficiency of confirmatory sputum testing, we recommend that an adaptive approach to threshold setting is adopted based on participant characteristics.</description><identifier>EISSN: 2767-3375</identifier><identifier>DOI: 10.1371/journal.pgph.0001272</identifier><language>eng</language><publisher>Public Library of Science (PLoS)</publisher><ispartof>PLOS global public health, 2022-01, Vol.2 (11), p.e0001272</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brenda Mungai</creatorcontrib><creatorcontrib>Jane Ong'angò</creatorcontrib><creatorcontrib>Chu Chang Ku</creatorcontrib><creatorcontrib>Marc Y R Henrion</creatorcontrib><creatorcontrib>Ben Morton</creatorcontrib><creatorcontrib>Elizabeth Joekes</creatorcontrib><creatorcontrib>Elizabeth Onyango</creatorcontrib><creatorcontrib>Richard Kiplimo</creatorcontrib><creatorcontrib>Dickson Kirathe</creatorcontrib><creatorcontrib>Enos Masini</creatorcontrib><creatorcontrib>Joseph Sitienei</creatorcontrib><creatorcontrib>Veronica Manduku</creatorcontrib><creatorcontrib>Beatrice Mugi</creatorcontrib><creatorcontrib>Stephen Bertel Squire</creatorcontrib><creatorcontrib>Peter MacPherson</creatorcontrib><creatorcontrib>IMPALA Consortium</creatorcontrib><title>Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey</title><title>PLOS global public health</title><description>Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR images from participants in the 2016 Kenya National TB Prevalence Survey were evaluated using CAD4TBv6 (Delft Imaging), giving a probabilistic score for pulmonary TB ranging from 0 (low probability) to 99 (high probability). We constructed a Bayesian latent class model to estimate the accuracy of CAD4TBv6 screening compared to bacteriologically-confirmed TB across CAD4TBv6 threshold cut-offs, incorporating data on Clinical Officer CXR interpretation, participant demographics (age, sex, TB symptoms, previous TB history), and sputum results. We compared model-estimated sensitivity and specificity of CAD4TBv6 to optimum and minimum TPPs. Of 63,050 prevalence survey participants, 61,848 (98%) had analysable CXR images, and 8,966 (14.5%) underwent sputum bacteriological testing; 298 had bacteriologically-confirmed pulmonary TB. Median CAD4TBv6 scores for participants with bacteriologically-confirmed TB were significantly higher (72, IQR: 58-82.75) compared to participants with bacteriologically-negative sputum results (49, IQR: 44-57, p&lt;0.0001). CAD4TBv6 met the optimum TPP; with the threshold set to achieve a mean sensitivity of 95% (optimum TPP), specificity was 83.3%, (95% credible interval [CrI]: 83.0%-83.7%, CAD4TBv6 threshold: 55). There was considerable variation in accuracy by participant characteristics, with older individuals and those with previous TB having lowest specificity. CAD4TBv6 met the optimal TPP for TB community screening. To optimise screening accuracy and efficiency of confirmatory sputum testing, we recommend that an adaptive approach to threshold setting is adopted based on participant characteristics.</description><issn>2767-3375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjs1KAzEUhYMgWLRv4OK-wNRkfpqOOxFFsYhgF-6GO-mdNmUmGW6SwjyI72sVFz6AqwPn4zscIa6VXKhCq5uDT-ywX4y7cb-QUqpc52diluulzopCVxdiHsLhBPKVkrouZuLzzpjEaCbwHRg_jCkSZ2i3tAWzpxDhI2OcwLpvOiRn45S1GE44ppbYpN4HGyAYJnLW7W5hTSF4F6BjP0DcE-RSLeGF3ITwitH600PY_JXfmI7YkzME74mPNF2J8w77QPPfvBTPjw-b-6ds6_HQjGwH5KnxaJufwvOuQY7W9NTUNdW6ymlllqosi6pF01ZUlV0tiaRpi__c-gL8X3si</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Brenda Mungai</creator><creator>Jane Ong'angò</creator><creator>Chu Chang Ku</creator><creator>Marc Y R Henrion</creator><creator>Ben Morton</creator><creator>Elizabeth Joekes</creator><creator>Elizabeth Onyango</creator><creator>Richard Kiplimo</creator><creator>Dickson Kirathe</creator><creator>Enos Masini</creator><creator>Joseph Sitienei</creator><creator>Veronica Manduku</creator><creator>Beatrice Mugi</creator><creator>Stephen Bertel Squire</creator><creator>Peter MacPherson</creator><creator>IMPALA Consortium</creator><general>Public Library of Science (PLoS)</general><scope>DOA</scope></search><sort><creationdate>20220101</creationdate><title>Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey</title><author>Brenda Mungai ; Jane Ong'angò ; Chu Chang Ku ; Marc Y R Henrion ; Ben Morton ; Elizabeth Joekes ; Elizabeth Onyango ; Richard Kiplimo ; Dickson Kirathe ; Enos Masini ; Joseph Sitienei ; Veronica Manduku ; Beatrice Mugi ; Stephen Bertel Squire ; Peter MacPherson ; IMPALA Consortium</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brenda Mungai</creatorcontrib><creatorcontrib>Jane Ong'angò</creatorcontrib><creatorcontrib>Chu Chang Ku</creatorcontrib><creatorcontrib>Marc Y R Henrion</creatorcontrib><creatorcontrib>Ben Morton</creatorcontrib><creatorcontrib>Elizabeth Joekes</creatorcontrib><creatorcontrib>Elizabeth Onyango</creatorcontrib><creatorcontrib>Richard Kiplimo</creatorcontrib><creatorcontrib>Dickson Kirathe</creatorcontrib><creatorcontrib>Enos Masini</creatorcontrib><creatorcontrib>Joseph Sitienei</creatorcontrib><creatorcontrib>Veronica Manduku</creatorcontrib><creatorcontrib>Beatrice Mugi</creatorcontrib><creatorcontrib>Stephen Bertel Squire</creatorcontrib><creatorcontrib>Peter MacPherson</creatorcontrib><creatorcontrib>IMPALA Consortium</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLOS global public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brenda Mungai</au><au>Jane Ong'angò</au><au>Chu Chang Ku</au><au>Marc Y R Henrion</au><au>Ben Morton</au><au>Elizabeth Joekes</au><au>Elizabeth Onyango</au><au>Richard Kiplimo</au><au>Dickson Kirathe</au><au>Enos Masini</au><au>Joseph Sitienei</au><au>Veronica Manduku</au><au>Beatrice Mugi</au><au>Stephen Bertel Squire</au><au>Peter MacPherson</au><au>IMPALA Consortium</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey</atitle><jtitle>PLOS global public health</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2</volume><issue>11</issue><spage>e0001272</spage><pages>e0001272-</pages><eissn>2767-3375</eissn><abstract>Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR images from participants in the 2016 Kenya National TB Prevalence Survey were evaluated using CAD4TBv6 (Delft Imaging), giving a probabilistic score for pulmonary TB ranging from 0 (low probability) to 99 (high probability). We constructed a Bayesian latent class model to estimate the accuracy of CAD4TBv6 screening compared to bacteriologically-confirmed TB across CAD4TBv6 threshold cut-offs, incorporating data on Clinical Officer CXR interpretation, participant demographics (age, sex, TB symptoms, previous TB history), and sputum results. We compared model-estimated sensitivity and specificity of CAD4TBv6 to optimum and minimum TPPs. Of 63,050 prevalence survey participants, 61,848 (98%) had analysable CXR images, and 8,966 (14.5%) underwent sputum bacteriological testing; 298 had bacteriologically-confirmed pulmonary TB. Median CAD4TBv6 scores for participants with bacteriologically-confirmed TB were significantly higher (72, IQR: 58-82.75) compared to participants with bacteriologically-negative sputum results (49, IQR: 44-57, p&lt;0.0001). CAD4TBv6 met the optimum TPP; with the threshold set to achieve a mean sensitivity of 95% (optimum TPP), specificity was 83.3%, (95% credible interval [CrI]: 83.0%-83.7%, CAD4TBv6 threshold: 55). There was considerable variation in accuracy by participant characteristics, with older individuals and those with previous TB having lowest specificity. CAD4TBv6 met the optimal TPP for TB community screening. To optimise screening accuracy and efficiency of confirmatory sputum testing, we recommend that an adaptive approach to threshold setting is adopted based on participant characteristics.</abstract><pub>Public Library of Science (PLoS)</pub><doi>10.1371/journal.pgph.0001272</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2767-3375
ispartof PLOS global public health, 2022-01, Vol.2 (11), p.e0001272
issn 2767-3375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb
source PubMed Central
title Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20computer-aided%20chest%20X-ray%20in%20community-based%20tuberculosis%20screening:%20Lessons%20from%20the%202016%20Kenya%20National%20Tuberculosis%20Prevalence%20Survey&rft.jtitle=PLOS%20global%20public%20health&rft.au=Brenda%20Mungai&rft.date=2022-01-01&rft.volume=2&rft.issue=11&rft.spage=e0001272&rft.pages=e0001272-&rft.eissn=2767-3375&rft_id=info:doi/10.1371/journal.pgph.0001272&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_99e9752e8c614435bacb5e54f90ee0cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true