Loading…

Residual oil saturation and displacement factor prediction methodology based on geophysical studies data to evaluate efficiency of nanotechnologies application

The displacement factor is important information when it is necessary to evaluate oil production dynamics and the prospects of development intensification and oil recovery enhancing methods, including nanotechnological methods. However, up to date there are no reliable oil-field methods to predict t...

Full description

Saved in:
Bibliographic Details
Published in:Nanotehnologii v stroitelʹstve 2017-01, Vol.9 (5), p.116-133
Main Authors: Akhmetov, R.T., Andreev, A.V., Mukhametshin, V.V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The displacement factor is important information when it is necessary to evaluate oil production dynamics and the prospects of development intensification and oil recovery enhancing methods, including nanotechnological methods. However, up to date there are no reliable oil-field methods to predict this parameter in situ well, under conditions of the natural reservoirs occurrence, and that causes this important parameter not to be taken into account when the impact on the bottomhole formation zone effectiveness is evaluated. In this paper the authors propose a methodology for prediction of the displacement factor that employs field geophysics data and that makes it possible to estimate this parameter in each geological cross-section both in the section and in the deposit area. The method is based on the use of two complex parameters characterizing the filtration properties and the productive formation hydrophilicity (hydrophobicity) degree. The both complex parameters are easily determined by the standard well logging complex data. At present the technologies that use solutions containing SiO2 nanoparticles are becoming more and more popular in oil production intensification and enhanced oil recovery process. The proposed calculation method for residual oil saturation and displacement coefficient can be used to obtain the reference values of the corresponding parameters when the efficiency of oil production intensification and enhanced oil recovery methods including nanotechnological ones is evaluated.
ISSN:2075-8545
2075-8545
DOI:10.15828/2075-8545-2017-9-5-116-133