Loading…

Synthesis of some oxadiazole derivatives as new anticandidal agents

In this study, 5-[(pyrimidin-2-ylthio)methyl]-1,3,4-oxadiazole-2(3H)-thione (3) was synthesized via the ring closure reaction of 2-(pyrimidin-2-ylthio)acetohydrazide (2) with carbon disulphide. New oxadiazole derivatives 4a-f were obtained by the nucleophilic substitution reaction of compound 3 with...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2011-09, Vol.16 (9), p.7662-7671
Main Author: Kaplancikli, Zafer Asim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, 5-[(pyrimidin-2-ylthio)methyl]-1,3,4-oxadiazole-2(3H)-thione (3) was synthesized via the ring closure reaction of 2-(pyrimidin-2-ylthio)acetohydrazide (2) with carbon disulphide. New oxadiazole derivatives 4a-f were obtained by the nucleophilic substitution reaction of compound 3 with various phenacyl bromides. The chemical structures of the compounds were elucidated by IR, 1H-NMR, 13C-NMR and FAB+-MS spectral data and elemental analyses. The newly synthesized derivatives 4a-f were tested in vitro by using a microbroth dilution method against C. albicans (clinical isolate, Osmangazi University, Faculty of Medicine, Eskişehir, Turkey), C. albicans (ATCC 90028), C. glabrata (clinical isolate, Osmangazi University, Faculty of Medicine, Eskişehir, Turkey), C. tropicalis (NRRL Y-12968), C. krusei (NRRL Y-7179), C. parapsilosis (NRRL Y- 12696), C. albicans (NRRL Y-12983), C. glabrata (clinical isolate, Anadolu University, Faculty of Science, Department of Biology, Eskişehir, Turkey). Among these compounds, compound 4a was found to be the most potent derivative (MIC = 0.007-0.06 versus ketoconazole: 0.001-0.007 mg/mL) against Candida species, except C. tropicalis and C. krusei when compared with the standard antifungal ketoconazole.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules16097662