Loading…

Effect of Hidden Column Type on Seismic Performance of the Insulated Sandwich Wall Panel Joints with Ceramsite Concrete Layer

Ceramsite concrete, with its advantages such as excellent long-term durability and thermal insulation properties, is suitable to be utilized as precast sandwich wall panels. While the lack of assessment of the seismic performance of such wall panel joints has been studied. Therefore, an experimental...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) 2022-12, Vol.12 (12), p.2214
Main Authors: Li, Lianghui, Ma, Shaochun, Bao, Peng, Wang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ceramsite concrete, with its advantages such as excellent long-term durability and thermal insulation properties, is suitable to be utilized as precast sandwich wall panels. While the lack of assessment of the seismic performance of such wall panel joints has been studied. Therefore, an experimental program was carried out to investigate and improve the seismic performance of the new type of wall panel joints. The seismic performances of the specimens were experimentally evaluated, including failure mode, loading and deformation capacity, ductility, the strain of vertically distributed steels, stiffness, and energy dissipation. The insulated sandwich wall panel joints have good seismic performance shown by the quasi-static test. The ductility coefficient of all specimens was greater than 3. The structure of the control group specimen presented a better match in stiffness, bearing capacity, ductility, and energy dissipation. The sleeve connection confirmed that the integrity of the joint, and the L-shaped hidden column could improve the ductility coefficient and equivalent viscous damping coefficient by about 4.2%. The results can promote the research of such wallboard system. This design approach of sandwich wall panel joints with lightweight concrete is broadly applicable to the exploration of more types of energy-saving wallboard systems.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings12122214