Loading…
DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm
A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be consid...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (22), p.6446 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3 |
container_end_page | |
container_issue | 22 |
container_start_page | 6446 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Kim, Seokhyun Park, Yongsu |
description | A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad. |
doi_str_mv | 10.3390/s20226446 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33</doaj_id><sourcerecordid>2460760297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</originalsourceid><addsrcrecordid>eNpVkUtLAzEQx4MoPqoHv8Ee9bCaV_PwIJS2PrCgiJ5Dkk3WlO1Gk13Bb-9qpdjTDDPD7_-fGQBOEbwgRMLLjCHGjFK2Aw4RxbQUGMPdf_kBOMp5CSEmhIh9cEAIEpxQeQgeZrPn0sbQXhWTtph7H2xwbVc8pWi0CU3IXbDFbAgpmL5zVfGSQl27VExj33ahrYtJU8cUurfVMdjzusnu5C-OwOvN_GV6Vy4eb--nk0VpKRJdKd0gjqnXRnpJPLHUSumpxwxB4uG4IlIzySqDGXOOaykhQ2NMrZaIC23JCNyvuVXUS_WewkqnLxV1UL-FmGql02C7cUpqIpywFcNjSb3gxhKEMeXGU4rMcI0RuF6z3nuzcpUddk-62YJud9rwpur4qfhgkYvxADj7A6T40bvcqVXI1jWNbl3ss8KUQc4glnwYPV-P2hRzTs5vZBBUP49Um0eSb61-jcM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460760297</pqid></control><display><type>article</type><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Seokhyun ; Park, Yongsu</creator><creatorcontrib>Kim, Seokhyun ; Park, Yongsu</creatorcontrib><description>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20226446</identifier><identifier>PMID: 33187349</identifier><language>eng</language><publisher>MDPI</publisher><subject>distributed algorithm ; distributed systems ; distributed trigger counting ; probabilistic algorithm</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6446</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</citedby><cites>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids></links><search><creatorcontrib>Kim, Seokhyun</creatorcontrib><creatorcontrib>Park, Yongsu</creatorcontrib><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><title>Sensors (Basel, Switzerland)</title><description>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</description><subject>distributed algorithm</subject><subject>distributed systems</subject><subject>distributed trigger counting</subject><subject>probabilistic algorithm</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEQx4MoPqoHv8Ee9bCaV_PwIJS2PrCgiJ5Dkk3WlO1Gk13Bb-9qpdjTDDPD7_-fGQBOEbwgRMLLjCHGjFK2Aw4RxbQUGMPdf_kBOMp5CSEmhIh9cEAIEpxQeQgeZrPn0sbQXhWTtph7H2xwbVc8pWi0CU3IXbDFbAgpmL5zVfGSQl27VExj33ahrYtJU8cUurfVMdjzusnu5C-OwOvN_GV6Vy4eb--nk0VpKRJdKd0gjqnXRnpJPLHUSumpxwxB4uG4IlIzySqDGXOOaykhQ2NMrZaIC23JCNyvuVXUS_WewkqnLxV1UL-FmGql02C7cUpqIpywFcNjSb3gxhKEMeXGU4rMcI0RuF6z3nuzcpUddk-62YJud9rwpur4qfhgkYvxADj7A6T40bvcqVXI1jWNbl3ss8KUQc4glnwYPV-P2hRzTs5vZBBUP49Um0eSb61-jcM</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Kim, Seokhyun</creator><creator>Park, Yongsu</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201111</creationdate><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><author>Kim, Seokhyun ; Park, Yongsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>distributed algorithm</topic><topic>distributed systems</topic><topic>distributed trigger counting</topic><topic>probabilistic algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokhyun</creatorcontrib><creatorcontrib>Park, Yongsu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokhyun</au><au>Park, Yongsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-11-11</date><risdate>2020</risdate><volume>20</volume><issue>22</issue><spage>6446</spage><pages>6446-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</abstract><pub>MDPI</pub><pmid>33187349</pmid><doi>10.3390/s20226446</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6446 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33 |
source | Publicly Available Content Database; PubMed Central |
subjects | distributed algorithm distributed systems distributed trigger counting probabilistic algorithm |
title | DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DDR-coin:%20An%20Efficient%20Probabilistic%20Distributed%20Trigger%20Counting%20Algorithm&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kim,%20Seokhyun&rft.date=2020-11-11&rft.volume=20&rft.issue=22&rft.spage=6446&rft.pages=6446-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20226446&rft_dat=%3Cproquest_doaj_%3E2460760297%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460760297&rft_id=info:pmid/33187349&rfr_iscdi=true |