Loading…

DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm

A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be consid...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (22), p.6446
Main Authors: Kim, Seokhyun, Park, Yongsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3
cites cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3
container_end_page
container_issue 22
container_start_page 6446
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Kim, Seokhyun
Park, Yongsu
description A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.
doi_str_mv 10.3390/s20226446
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33</doaj_id><sourcerecordid>2460760297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</originalsourceid><addsrcrecordid>eNpVkUtLAzEQx4MoPqoHv8Ee9bCaV_PwIJS2PrCgiJ5Dkk3WlO1Gk13Bb-9qpdjTDDPD7_-fGQBOEbwgRMLLjCHGjFK2Aw4RxbQUGMPdf_kBOMp5CSEmhIh9cEAIEpxQeQgeZrPn0sbQXhWTtph7H2xwbVc8pWi0CU3IXbDFbAgpmL5zVfGSQl27VExj33ahrYtJU8cUurfVMdjzusnu5C-OwOvN_GV6Vy4eb--nk0VpKRJdKd0gjqnXRnpJPLHUSumpxwxB4uG4IlIzySqDGXOOaykhQ2NMrZaIC23JCNyvuVXUS_WewkqnLxV1UL-FmGql02C7cUpqIpywFcNjSb3gxhKEMeXGU4rMcI0RuF6z3nuzcpUddk-62YJud9rwpur4qfhgkYvxADj7A6T40bvcqVXI1jWNbl3ss8KUQc4glnwYPV-P2hRzTs5vZBBUP49Um0eSb61-jcM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460760297</pqid></control><display><type>article</type><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Seokhyun ; Park, Yongsu</creator><creatorcontrib>Kim, Seokhyun ; Park, Yongsu</creatorcontrib><description>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20226446</identifier><identifier>PMID: 33187349</identifier><language>eng</language><publisher>MDPI</publisher><subject>distributed algorithm ; distributed systems ; distributed trigger counting ; probabilistic algorithm</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6446</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</citedby><cites>FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids></links><search><creatorcontrib>Kim, Seokhyun</creatorcontrib><creatorcontrib>Park, Yongsu</creatorcontrib><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><title>Sensors (Basel, Switzerland)</title><description>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</description><subject>distributed algorithm</subject><subject>distributed systems</subject><subject>distributed trigger counting</subject><subject>probabilistic algorithm</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEQx4MoPqoHv8Ee9bCaV_PwIJS2PrCgiJ5Dkk3WlO1Gk13Bb-9qpdjTDDPD7_-fGQBOEbwgRMLLjCHGjFK2Aw4RxbQUGMPdf_kBOMp5CSEmhIh9cEAIEpxQeQgeZrPn0sbQXhWTtph7H2xwbVc8pWi0CU3IXbDFbAgpmL5zVfGSQl27VExj33ahrYtJU8cUurfVMdjzusnu5C-OwOvN_GV6Vy4eb--nk0VpKRJdKd0gjqnXRnpJPLHUSumpxwxB4uG4IlIzySqDGXOOaykhQ2NMrZaIC23JCNyvuVXUS_WewkqnLxV1UL-FmGql02C7cUpqIpywFcNjSb3gxhKEMeXGU4rMcI0RuF6z3nuzcpUddk-62YJud9rwpur4qfhgkYvxADj7A6T40bvcqVXI1jWNbl3ss8KUQc4glnwYPV-P2hRzTs5vZBBUP49Um0eSb61-jcM</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Kim, Seokhyun</creator><creator>Park, Yongsu</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201111</creationdate><title>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</title><author>Kim, Seokhyun ; Park, Yongsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>distributed algorithm</topic><topic>distributed systems</topic><topic>distributed trigger counting</topic><topic>probabilistic algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokhyun</creatorcontrib><creatorcontrib>Park, Yongsu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokhyun</au><au>Park, Yongsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2020-11-11</date><risdate>2020</risdate><volume>20</volume><issue>22</issue><spage>6446</spage><pages>6446-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A distributed trigger counting (DTC) problem is to detect w triggers in the distributed system consisting of n nodes. DTC algorithms can be used for monitoring systems using sensors to detect a significant global change. When designing an efficient DTC algorithm, the following goals should be considered; minimizing the whole number of exchanged messages used for counting triggers and even distribution of communication loads among nodes. In this paper, we present an efficient DTC algorithm, DDR-coin (Deterministic Detection of Randomly generated coins). The message complexity—the total number of exchanged messages—of DDR-coin is O(nlogn(w/n)) in average. MaxRcvLoad—the maximum number of received messages to detect w triggers in each node—is O(logn(w/n)) on average. DDR-coin is not an exact algorithm; even though w triggers are received by the n nodes, it can fail to raise an alarm with a negligible probability. However, DDR-coin is more efficient than exact DTC algorithms on average and the gap between those is increased for larger n. We implemented the prototype of the proposed scheme using NetLogo 6.1.1. We confirmed that experimental results are close to our mathematical analysis. Compared with the previous schemes—TreeFill, CoinRand, and RingRand— DDR-coin shows smaller message complexity and MaxRcvLoad.</abstract><pub>MDPI</pub><pmid>33187349</pmid><doi>10.3390/s20226446</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-11, Vol.20 (22), p.6446
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9a38e8cd62594f87bc312247bf441b33
source Publicly Available Content Database; PubMed Central
subjects distributed algorithm
distributed systems
distributed trigger counting
probabilistic algorithm
title DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DDR-coin:%20An%20Efficient%20Probabilistic%20Distributed%20Trigger%20Counting%20Algorithm&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kim,%20Seokhyun&rft.date=2020-11-11&rft.volume=20&rft.issue=22&rft.spage=6446&rft.pages=6446-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20226446&rft_dat=%3Cproquest_doaj_%3E2460760297%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9e18724fab9f93f3c4c99f4f26103f05d39a696db266ee7a99061524ca9178ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460760297&rft_id=info:pmid/33187349&rfr_iscdi=true