Loading…
Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals
The intrinsic effects of metal cation (La) and non-metallic anion (N) doping of CeO2 nanoparticles (NPs) for regenerative scavenging of reactive oxygen radicals were studied. La-doped CeO2 NPs were prepared by the conventional impregnation method at various La doping levels. N-doped CeO2 NPs were pr...
Saved in:
Published in: | Catalysts 2023-03, Vol.13 (3), p.572 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The intrinsic effects of metal cation (La) and non-metallic anion (N) doping of CeO2 nanoparticles (NPs) for regenerative scavenging of reactive oxygen radicals were studied. La-doped CeO2 NPs were prepared by the conventional impregnation method at various La doping levels. N-doped CeO2 NPs were prepared by urea thermolysis with two different methods: (i) direct thermolysis of urea after physical mixing with CeO2 NPs and (ii) wet impregnation of CeO2 NPs with urea followed by thermolysis under inert N2 atmosphere. Physicochemical properties of samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and N2 sorption measurement. Radical scavenging properties of the samples were characterized by applying Fenton’s reaction. Results indicated that atomic N doping on CeO2 NPs significantly enhanced radical scavenging properties of CeO2 NPs, resulting in an activity of N-doped CeO2 about 3.6 times greater than the pristine CeO2 NPs and 1.6 times higher than the La-doped CeO2 NPs. This result suggests that anionic N doping of CeO2 NPs is highly effective in enhancing radical scavenging properties of CeO2 NPs, whereas such modifications have been typically practiced by hetero-metal doping with rare earth metal elements. A collective structure–property correlation analysis suggested that enhancement of radical scavenging properties of heteroatom-doped CeO2 NPs was largely attributed to an increase in surface oxygen vacancies on CeO2 NPs due to heteroatom doping. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13030572 |