Loading…

Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques

In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence dat...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-10, Vol.28 (20), p.7048
Main Authors: Ingwani, Thomas, Chaukura, Nhamo, Mamba, Bhekie B., Nkambule, Thabo T. I., Gilmore, Adam M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3
cites cdi_FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3
container_end_page
container_issue 20
container_start_page 7048
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Ingwani, Thomas
Chaukura, Nhamo
Mamba, Bhekie B.
Nkambule, Thabo T. I.
Gilmore, Adam M.
description In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence data obtained from surface water samples contaminated with BPA unraveled four fluorophores including BPA. The best outcomes were obtained for BPA concentration (R2 = 0.996; standard deviation to prediction error’s root mean square ratio (RPD) = 3.41; and a Pearson’s r value of 0.998). With these values of R2 and Pearson’s r, the PLS model showed a strong correlation between the predicted and measured BPA concentrations. The detection and quantification limits of the method were 3.512 and 11.708 micro molar (µM), respectively. In conclusion, BPA can be precisely detected and its concentration in surface water predicted using the PARAFAC and PLS models developed in this study and fluorescence EEM data collected from BPA-contaminated water. It is necessary to spatially relate surface water contamination data with other datasets in order to connect drinking water quality issues with health, environmental restoration, and environmental justice concerns.
doi_str_mv 10.3390/molecules28207048
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a8fafd5b1d947d795e4010f81aa952a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772197512</galeid><doaj_id>oai_doaj_org_article_9a8fafd5b1d947d795e4010f81aa952a</doaj_id><sourcerecordid>A772197512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3</originalsourceid><addsrcrecordid>eNplksFu1DAQhiMEEqXwANwscSmHFDuxN84JLcsWKnWFEFtxjCbOeNerxF5sh9Ib78DD8D48Cc5uhSjIB3t-__ONPZose87oeVnW9NXgelRjj6GQBa0olw-yE8YLmpeU1w__Oj_OnoSwo7RgnImT7OdbjKiicZaA7cjHEWw02ig4SE6TNybst2hdT-bEWPJp9BoUks8Q0ZPrYOyGzNvgfAtW4a_vP9YebBhMjFN8YF70o_MYFE7C8psy8QBP3uVgQpjqrCB6ozCQs3m-Xi5XL8nCjfseO3Jj4pasxj6aG7gla1Rba76MGJ5mjzT0AZ_d7afZ9cVyvXifX314d7mYX-VKMBrzSrSCK1pJpqEFySTruNKsbNsOO9WhkDPOVSU5Ks1ngpYlrbqqKEqmWa1oW55ml0du52DX7L0ZwN82DkxzEJzfNOCjUT02NUgNuhMt62qeKLVAThnVkgHUooDEen1k7cd2SOXRRg_9Pej9G2u2zcZ9bRid0YQUiXB2R_Bu6kJsUgcV9j1YdGNoCilLIXnFabK--Me6c6O3qVeTq5jRshKT6_zo2kD6gbHapcIqrQ4Ho5xFbZI-r6qC1ZVgRUpgxwTlXQge9Z_nM9pMk9j8N4nlb5Vc2Vo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882603750</pqid></control><display><type>article</type><title>Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Ingwani, Thomas ; Chaukura, Nhamo ; Mamba, Bhekie B. ; Nkambule, Thabo T. I. ; Gilmore, Adam M.</creator><creatorcontrib>Ingwani, Thomas ; Chaukura, Nhamo ; Mamba, Bhekie B. ; Nkambule, Thabo T. I. ; Gilmore, Adam M.</creatorcontrib><description>In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence data obtained from surface water samples contaminated with BPA unraveled four fluorophores including BPA. The best outcomes were obtained for BPA concentration (R2 = 0.996; standard deviation to prediction error’s root mean square ratio (RPD) = 3.41; and a Pearson’s r value of 0.998). With these values of R2 and Pearson’s r, the PLS model showed a strong correlation between the predicted and measured BPA concentrations. The detection and quantification limits of the method were 3.512 and 11.708 micro molar (µM), respectively. In conclusion, BPA can be precisely detected and its concentration in surface water predicted using the PARAFAC and PLS models developed in this study and fluorescence EEM data collected from BPA-contaminated water. It is necessary to spatially relate surface water contamination data with other datasets in order to connect drinking water quality issues with health, environmental restoration, and environmental justice concerns.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28207048</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; and validation ; Aquatic resources ; Bisphenol A ; Calibration ; Epoxy resins ; Fluorescence ; Literature reviews ; method development ; Methods ; optimisation ; parallel factor modelling ; partial least squares modelling ; Phenols ; Polycarbonates ; South Africa ; Spectrum analysis ; Surface water ; Water pollution</subject><ispartof>Molecules (Basel, Switzerland), 2023-10, Vol.28 (20), p.7048</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3</citedby><cites>FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3</cites><orcidid>0000-0001-7797-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882603750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882603750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Ingwani, Thomas</creatorcontrib><creatorcontrib>Chaukura, Nhamo</creatorcontrib><creatorcontrib>Mamba, Bhekie B.</creatorcontrib><creatorcontrib>Nkambule, Thabo T. I.</creatorcontrib><creatorcontrib>Gilmore, Adam M.</creatorcontrib><title>Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques</title><title>Molecules (Basel, Switzerland)</title><description>In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence data obtained from surface water samples contaminated with BPA unraveled four fluorophores including BPA. The best outcomes were obtained for BPA concentration (R2 = 0.996; standard deviation to prediction error’s root mean square ratio (RPD) = 3.41; and a Pearson’s r value of 0.998). With these values of R2 and Pearson’s r, the PLS model showed a strong correlation between the predicted and measured BPA concentrations. The detection and quantification limits of the method were 3.512 and 11.708 micro molar (µM), respectively. In conclusion, BPA can be precisely detected and its concentration in surface water predicted using the PARAFAC and PLS models developed in this study and fluorescence EEM data collected from BPA-contaminated water. It is necessary to spatially relate surface water contamination data with other datasets in order to connect drinking water quality issues with health, environmental restoration, and environmental justice concerns.</description><subject>Algorithms</subject><subject>and validation</subject><subject>Aquatic resources</subject><subject>Bisphenol A</subject><subject>Calibration</subject><subject>Epoxy resins</subject><subject>Fluorescence</subject><subject>Literature reviews</subject><subject>method development</subject><subject>Methods</subject><subject>optimisation</subject><subject>parallel factor modelling</subject><subject>partial least squares modelling</subject><subject>Phenols</subject><subject>Polycarbonates</subject><subject>South Africa</subject><subject>Spectrum analysis</subject><subject>Surface water</subject><subject>Water pollution</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplksFu1DAQhiMEEqXwANwscSmHFDuxN84JLcsWKnWFEFtxjCbOeNerxF5sh9Ib78DD8D48Cc5uhSjIB3t-__ONPZose87oeVnW9NXgelRjj6GQBa0olw-yE8YLmpeU1w__Oj_OnoSwo7RgnImT7OdbjKiicZaA7cjHEWw02ig4SE6TNybst2hdT-bEWPJp9BoUks8Q0ZPrYOyGzNvgfAtW4a_vP9YebBhMjFN8YF70o_MYFE7C8psy8QBP3uVgQpjqrCB6ozCQs3m-Xi5XL8nCjfseO3Jj4pasxj6aG7gla1Rba76MGJ5mjzT0AZ_d7afZ9cVyvXifX314d7mYX-VKMBrzSrSCK1pJpqEFySTruNKsbNsOO9WhkDPOVSU5Ks1ngpYlrbqqKEqmWa1oW55ml0du52DX7L0ZwN82DkxzEJzfNOCjUT02NUgNuhMt62qeKLVAThnVkgHUooDEen1k7cd2SOXRRg_9Pej9G2u2zcZ9bRid0YQUiXB2R_Bu6kJsUgcV9j1YdGNoCilLIXnFabK--Me6c6O3qVeTq5jRshKT6_zo2kD6gbHapcIqrQ4Ho5xFbZI-r6qC1ZVgRUpgxwTlXQge9Z_nM9pMk9j8N4nlb5Vc2Vo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ingwani, Thomas</creator><creator>Chaukura, Nhamo</creator><creator>Mamba, Bhekie B.</creator><creator>Nkambule, Thabo T. I.</creator><creator>Gilmore, Adam M.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7797-6915</orcidid></search><sort><creationdate>20231001</creationdate><title>Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques</title><author>Ingwani, Thomas ; Chaukura, Nhamo ; Mamba, Bhekie B. ; Nkambule, Thabo T. I. ; Gilmore, Adam M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>and validation</topic><topic>Aquatic resources</topic><topic>Bisphenol A</topic><topic>Calibration</topic><topic>Epoxy resins</topic><topic>Fluorescence</topic><topic>Literature reviews</topic><topic>method development</topic><topic>Methods</topic><topic>optimisation</topic><topic>parallel factor modelling</topic><topic>partial least squares modelling</topic><topic>Phenols</topic><topic>Polycarbonates</topic><topic>South Africa</topic><topic>Spectrum analysis</topic><topic>Surface water</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingwani, Thomas</creatorcontrib><creatorcontrib>Chaukura, Nhamo</creatorcontrib><creatorcontrib>Mamba, Bhekie B.</creatorcontrib><creatorcontrib>Nkambule, Thabo T. I.</creatorcontrib><creatorcontrib>Gilmore, Adam M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingwani, Thomas</au><au>Chaukura, Nhamo</au><au>Mamba, Bhekie B.</au><au>Nkambule, Thabo T. I.</au><au>Gilmore, Adam M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>28</volume><issue>20</issue><spage>7048</spage><pages>7048-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence data obtained from surface water samples contaminated with BPA unraveled four fluorophores including BPA. The best outcomes were obtained for BPA concentration (R2 = 0.996; standard deviation to prediction error’s root mean square ratio (RPD) = 3.41; and a Pearson’s r value of 0.998). With these values of R2 and Pearson’s r, the PLS model showed a strong correlation between the predicted and measured BPA concentrations. The detection and quantification limits of the method were 3.512 and 11.708 micro molar (µM), respectively. In conclusion, BPA can be precisely detected and its concentration in surface water predicted using the PARAFAC and PLS models developed in this study and fluorescence EEM data collected from BPA-contaminated water. It is necessary to spatially relate surface water contamination data with other datasets in order to connect drinking water quality issues with health, environmental restoration, and environmental justice concerns.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/molecules28207048</doi><orcidid>https://orcid.org/0000-0001-7797-6915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2023-10, Vol.28 (20), p.7048
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9a8fafd5b1d947d795e4010f81aa952a
source Open Access: PubMed Central; Publicly Available Content Database
subjects Algorithms
and validation
Aquatic resources
Bisphenol A
Calibration
Epoxy resins
Fluorescence
Literature reviews
method development
Methods
optimisation
parallel factor modelling
partial least squares modelling
Phenols
Polycarbonates
South Africa
Spectrum analysis
Surface water
Water pollution
title Detection and Quantification of Bisphenol A in Surface Water Using Absorbance–Transmittance and Fluorescence Excitation–Emission Matrices (A-TEEM) Coupled with Multiway Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Quantification%20of%20Bisphenol%20A%20in%20Surface%20Water%20Using%20Absorbance%E2%80%93Transmittance%20and%20Fluorescence%20Excitation%E2%80%93Emission%20Matrices%20(A-TEEM)%20Coupled%20with%20Multiway%20Techniques&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ingwani,%20Thomas&rft.date=2023-10-01&rft.volume=28&rft.issue=20&rft.spage=7048&rft.pages=7048-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28207048&rft_dat=%3Cgale_doaj_%3EA772197512%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-75b54c0781faba8181d4cf13bbdedcde58644c784ecf46503307d72231f19c0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882603750&rft_id=info:pmid/&rft_galeid=A772197512&rfr_iscdi=true