Loading…
Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency
MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the...
Saved in:
Published in: | Talanta open 2021-12, Vol.4, p.100063, Article 100063 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53 |
container_end_page | |
container_issue | |
container_start_page | 100063 |
container_title | Talanta open |
container_volume | 4 |
creator | Martin, David Monbet, Valérie Sire, Olivier Corvec, Maëna Le Loréal, Olivier |
description | MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms).
[Display omitted] |
doi_str_mv | 10.1016/j.talo.2021.100063 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666831921000333</els_id><doaj_id>oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7</doaj_id><sourcerecordid>S2666831921000333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</originalsourceid><addsrcrecordid>eNp9UU1LxDAULKKgqH_AU68euuajiS14UVF3YUUQPYeX5MXNUjclqQv7702tiF485WXmzfCYKYozSmaUUHmxng3QhRkjjGaAEMn3iiMmpawaTtv9X_NhcZrSOq8wQfNXHBWrx49u8FXEFLqPwYdNeVOlvvMbTKWFAUoT3vvMppHyeQzbzDwunsvUoxliSCb0u0pDQlvOEbphVVoPb5uQBm9KdM4bjxuzOykOHHQJT7_f4-L1_u7ldl4tnx4Wt9fLyvBWDBWVlgFS7rTWnGgmLm1trJSCIdEG6tZkEp10teQtCNoi47Vw1IoGNNWCHxeLydcGWKs--neIOxXAqy8gxDcFMZ_WoWqhcUhQN7aBmlndNKLljDQODGXGXGav88lrBd0fq_n1Uo0Y4ZwxWvMtzbts2jU5kxTR_QgoUWNNaq3GmtRYk5pqyqKrSYQ5ka3HqNJXWmh9zOnmk_1_8k-7SZzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><source>ScienceDirect Journals</source><creator>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</creator><creatorcontrib>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</creatorcontrib><description>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms).
[Display omitted]</description><identifier>ISSN: 2666-8319</identifier><identifier>EISSN: 2666-8319</identifier><identifier>DOI: 10.1016/j.talo.2021.100063</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-splines ; Biomarkers ; Health diagnostic ; Mathematics ; MIR spectroscopy ; Multivariate analysis ; Statistics</subject><ispartof>Talanta open, 2021-12, Vol.4, p.100063, Article 100063</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</cites><orcidid>0000-0001-7365-9189 ; 0000-0003-1817-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666831921000333$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03322143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, David</creatorcontrib><creatorcontrib>Monbet, Valérie</creatorcontrib><creatorcontrib>Sire, Olivier</creatorcontrib><creatorcontrib>Corvec, Maëna Le</creatorcontrib><creatorcontrib>Loréal, Olivier</creatorcontrib><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><title>Talanta open</title><description>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms).
[Display omitted]</description><subject>B-splines</subject><subject>Biomarkers</subject><subject>Health diagnostic</subject><subject>Mathematics</subject><subject>MIR spectroscopy</subject><subject>Multivariate analysis</subject><subject>Statistics</subject><issn>2666-8319</issn><issn>2666-8319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAULKKgqH_AU68euuajiS14UVF3YUUQPYeX5MXNUjclqQv7702tiF485WXmzfCYKYozSmaUUHmxng3QhRkjjGaAEMn3iiMmpawaTtv9X_NhcZrSOq8wQfNXHBWrx49u8FXEFLqPwYdNeVOlvvMbTKWFAUoT3vvMppHyeQzbzDwunsvUoxliSCb0u0pDQlvOEbphVVoPb5uQBm9KdM4bjxuzOykOHHQJT7_f4-L1_u7ldl4tnx4Wt9fLyvBWDBWVlgFS7rTWnGgmLm1trJSCIdEG6tZkEp10teQtCNoi47Vw1IoGNNWCHxeLydcGWKs--neIOxXAqy8gxDcFMZ_WoWqhcUhQN7aBmlndNKLljDQODGXGXGav88lrBd0fq_n1Uo0Y4ZwxWvMtzbts2jU5kxTR_QgoUWNNaq3GmtRYk5pqyqKrSYQ5ka3HqNJXWmh9zOnmk_1_8k-7SZzA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Martin, David</creator><creator>Monbet, Valérie</creator><creator>Sire, Olivier</creator><creator>Corvec, Maëna Le</creator><creator>Loréal, Olivier</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7365-9189</orcidid><orcidid>https://orcid.org/0000-0003-1817-3391</orcidid></search><sort><creationdate>202112</creationdate><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><author>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B-splines</topic><topic>Biomarkers</topic><topic>Health diagnostic</topic><topic>Mathematics</topic><topic>MIR spectroscopy</topic><topic>Multivariate analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, David</creatorcontrib><creatorcontrib>Monbet, Valérie</creatorcontrib><creatorcontrib>Sire, Olivier</creatorcontrib><creatorcontrib>Corvec, Maëna Le</creatorcontrib><creatorcontrib>Loréal, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Talanta open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, David</au><au>Monbet, Valérie</au><au>Sire, Olivier</au><au>Corvec, Maëna Le</au><au>Loréal, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</atitle><jtitle>Talanta open</jtitle><date>2021-12</date><risdate>2021</risdate><volume>4</volume><spage>100063</spage><pages>100063-</pages><artnum>100063</artnum><issn>2666-8319</issn><eissn>2666-8319</eissn><abstract>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms).
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talo.2021.100063</doi><orcidid>https://orcid.org/0000-0001-7365-9189</orcidid><orcidid>https://orcid.org/0000-0003-1817-3391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-8319 |
ispartof | Talanta open, 2021-12, Vol.4, p.100063, Article 100063 |
issn | 2666-8319 2666-8319 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7 |
source | ScienceDirect Journals |
subjects | B-splines Biomarkers Health diagnostic Mathematics MIR spectroscopy Multivariate analysis Statistics |
title | Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-resolution%20B-splines%20data%20compression%20improves%20MIR%20spectroscopy-based%20Health%20diagnostic%20efficiency&rft.jtitle=Talanta%20open&rft.au=Martin,%20David&rft.date=2021-12&rft.volume=4&rft.spage=100063&rft.pages=100063-&rft.artnum=100063&rft.issn=2666-8319&rft.eissn=2666-8319&rft_id=info:doi/10.1016/j.talo.2021.100063&rft_dat=%3Celsevier_doaj_%3ES2666831921000333%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |