Loading…

Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency

MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the...

Full description

Saved in:
Bibliographic Details
Published in:Talanta open 2021-12, Vol.4, p.100063, Article 100063
Main Authors: Martin, David, Monbet, Valérie, Sire, Olivier, Corvec, Maëna Le, Loréal, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53
container_end_page
container_issue
container_start_page 100063
container_title Talanta open
container_volume 4
creator Martin, David
Monbet, Valérie
Sire, Olivier
Corvec, Maëna Le
Loréal, Olivier
description MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms). [Display omitted]
doi_str_mv 10.1016/j.talo.2021.100063
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666831921000333</els_id><doaj_id>oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7</doaj_id><sourcerecordid>S2666831921000333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</originalsourceid><addsrcrecordid>eNp9UU1LxDAULKKgqH_AU68euuajiS14UVF3YUUQPYeX5MXNUjclqQv7702tiF485WXmzfCYKYozSmaUUHmxng3QhRkjjGaAEMn3iiMmpawaTtv9X_NhcZrSOq8wQfNXHBWrx49u8FXEFLqPwYdNeVOlvvMbTKWFAUoT3vvMppHyeQzbzDwunsvUoxliSCb0u0pDQlvOEbphVVoPb5uQBm9KdM4bjxuzOykOHHQJT7_f4-L1_u7ldl4tnx4Wt9fLyvBWDBWVlgFS7rTWnGgmLm1trJSCIdEG6tZkEp10teQtCNoi47Vw1IoGNNWCHxeLydcGWKs--neIOxXAqy8gxDcFMZ_WoWqhcUhQN7aBmlndNKLljDQODGXGXGav88lrBd0fq_n1Uo0Y4ZwxWvMtzbts2jU5kxTR_QgoUWNNaq3GmtRYk5pqyqKrSYQ5ka3HqNJXWmh9zOnmk_1_8k-7SZzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><source>ScienceDirect Journals</source><creator>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</creator><creatorcontrib>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</creatorcontrib><description>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms). [Display omitted]</description><identifier>ISSN: 2666-8319</identifier><identifier>EISSN: 2666-8319</identifier><identifier>DOI: 10.1016/j.talo.2021.100063</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-splines ; Biomarkers ; Health diagnostic ; Mathematics ; MIR spectroscopy ; Multivariate analysis ; Statistics</subject><ispartof>Talanta open, 2021-12, Vol.4, p.100063, Article 100063</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</cites><orcidid>0000-0001-7365-9189 ; 0000-0003-1817-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666831921000333$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03322143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, David</creatorcontrib><creatorcontrib>Monbet, Valérie</creatorcontrib><creatorcontrib>Sire, Olivier</creatorcontrib><creatorcontrib>Corvec, Maëna Le</creatorcontrib><creatorcontrib>Loréal, Olivier</creatorcontrib><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><title>Talanta open</title><description>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms). [Display omitted]</description><subject>B-splines</subject><subject>Biomarkers</subject><subject>Health diagnostic</subject><subject>Mathematics</subject><subject>MIR spectroscopy</subject><subject>Multivariate analysis</subject><subject>Statistics</subject><issn>2666-8319</issn><issn>2666-8319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAULKKgqH_AU68euuajiS14UVF3YUUQPYeX5MXNUjclqQv7702tiF485WXmzfCYKYozSmaUUHmxng3QhRkjjGaAEMn3iiMmpawaTtv9X_NhcZrSOq8wQfNXHBWrx49u8FXEFLqPwYdNeVOlvvMbTKWFAUoT3vvMppHyeQzbzDwunsvUoxliSCb0u0pDQlvOEbphVVoPb5uQBm9KdM4bjxuzOykOHHQJT7_f4-L1_u7ldl4tnx4Wt9fLyvBWDBWVlgFS7rTWnGgmLm1trJSCIdEG6tZkEp10teQtCNoi47Vw1IoGNNWCHxeLydcGWKs--neIOxXAqy8gxDcFMZ_WoWqhcUhQN7aBmlndNKLljDQODGXGXGav88lrBd0fq_n1Uo0Y4ZwxWvMtzbts2jU5kxTR_QgoUWNNaq3GmtRYk5pqyqKrSYQ5ka3HqNJXWmh9zOnmk_1_8k-7SZzA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Martin, David</creator><creator>Monbet, Valérie</creator><creator>Sire, Olivier</creator><creator>Corvec, Maëna Le</creator><creator>Loréal, Olivier</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7365-9189</orcidid><orcidid>https://orcid.org/0000-0003-1817-3391</orcidid></search><sort><creationdate>202112</creationdate><title>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</title><author>Martin, David ; Monbet, Valérie ; Sire, Olivier ; Corvec, Maëna Le ; Loréal, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B-splines</topic><topic>Biomarkers</topic><topic>Health diagnostic</topic><topic>Mathematics</topic><topic>MIR spectroscopy</topic><topic>Multivariate analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, David</creatorcontrib><creatorcontrib>Monbet, Valérie</creatorcontrib><creatorcontrib>Sire, Olivier</creatorcontrib><creatorcontrib>Corvec, Maëna Le</creatorcontrib><creatorcontrib>Loréal, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Talanta open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, David</au><au>Monbet, Valérie</au><au>Sire, Olivier</au><au>Corvec, Maëna Le</au><au>Loréal, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency</atitle><jtitle>Talanta open</jtitle><date>2021-12</date><risdate>2021</risdate><volume>4</volume><spage>100063</spage><pages>100063-</pages><artnum>100063</artnum><issn>2666-8319</issn><eissn>2666-8319</eissn><abstract>MIR spectroscopy is becoming an increasingly important tool potentially useful for diagnosis purposes especially by studying body fluids. Indeed, diseases induce changes in the composition of fluids modifying the MIR spectra. However, such changes can be difficult to capture if the structure of the data is not considered. Our objective was to improve MIR spectra analysis by using approximation of the spectra by B-splines at different specific resolutions and to combine these spectra representations with a machine learning model to predict hepatic steatosis from serum study. The different resolutions make it possible to identify changes in shape over bands of various widths. The multiresolution model helps to improve the hepatic steatosis prediction compared to conventional approaches where the absorbances are considered as unstructured variables. In addition, B-splines provide both localized and compressed information that can be translated into biochemical terms more easily than with other classical approximation methods (wavelets, Fourier transforms). [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talo.2021.100063</doi><orcidid>https://orcid.org/0000-0001-7365-9189</orcidid><orcidid>https://orcid.org/0000-0003-1817-3391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8319
ispartof Talanta open, 2021-12, Vol.4, p.100063, Article 100063
issn 2666-8319
2666-8319
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9a8fe0eb8d8a42db88593208fac12cc7
source ScienceDirect Journals
subjects B-splines
Biomarkers
Health diagnostic
Mathematics
MIR spectroscopy
Multivariate analysis
Statistics
title Multi-resolution B-splines data compression improves MIR spectroscopy-based Health diagnostic efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-resolution%20B-splines%20data%20compression%20improves%20MIR%20spectroscopy-based%20Health%20diagnostic%20efficiency&rft.jtitle=Talanta%20open&rft.au=Martin,%20David&rft.date=2021-12&rft.volume=4&rft.spage=100063&rft.pages=100063-&rft.artnum=100063&rft.issn=2666-8319&rft.eissn=2666-8319&rft_id=info:doi/10.1016/j.talo.2021.100063&rft_dat=%3Celsevier_doaj_%3ES2666831921000333%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-16d2ae13fbbb30b257d4cd6652e0bca49ce13ef6f4639a519e2345f1d58ab1b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true