Loading…

Mitochondrial K+ Transport: Modulation and Functional Consequences

The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-05, Vol.26 (10), p.2935
Main Authors: Pereira, Osvaldo, Kowaltowski, Alicia J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26102935