Loading…

Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy

Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochond...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-10, Vol.21 (21), p.7941
Main Authors: Dong, Lanfeng, Gopalan, Vinod, Holland, Olivia, Neuzil, Jiri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523
cites cdi_FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523
container_end_page
container_issue 21
container_start_page 7941
container_title International journal of molecular sciences
container_volume 21
creator Dong, Lanfeng
Gopalan, Vinod
Holland, Olivia
Neuzil, Jiri
description Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
doi_str_mv 10.3390/ijms21217941
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9aaa58c4c58b4316a4aef0ddd1749732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9aaa58c4c58b4316a4aef0ddd1749732</doaj_id><sourcerecordid>2548646389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523</originalsourceid><addsrcrecordid>eNpVkctrGzEQxkVoyfuWc1noNZtq9NpVD4Vg0iTgUgjOWYwea8vYK1daB_LfdxMnwTnNMPPxm2_4CLkAesW5pj_icl0YMGi0gANyDIKxmlLVfNnrj8hJKUtKGWdSH5IjzgGE0vKYTP_EITnsS_UQnmKJQ_A_q9fZIvU-R1xVM8zzMMR-XmGpbrouuhj6obruh1hPsHchV7NFyLh5PiNfO1yVcP5WT8nj75vZ5K6e_r29n1xPayeFGGodGA_c2tGP1NBYL1rLgQuHDqig0llo0UuwSkqQSgmhNXbQOStZFyTjp-R-x_UJl2aT4xrzs0kYzesg5bnBPES3CkYjomydcLK1goNCgaGj3ntohG74C-vXjrXZ2nXwbnwt4-oT9POmjwszT0-mUYqrVo6A72-AnP5tQxnMMm1zP_5vmBStEoq3elRd7lQup1Jy6D4uADUvOZr9HEf5t31XH-L34Ph_LPCZBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548646389</pqid></control><display><type>article</type><title>Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Dong, Lanfeng ; Gopalan, Vinod ; Holland, Olivia ; Neuzil, Jiri</creator><creatorcontrib>Dong, Lanfeng ; Gopalan, Vinod ; Holland, Olivia ; Neuzil, Jiri</creatorcontrib><description>Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21217941</identifier><identifier>PMID: 33114695</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine triphosphate ; anti-cancer strategy ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Binding sites ; Bioenergetics ; Biosynthesis ; Cancer ; Cancer therapies ; Cell death ; Citric Acid Cycle - drug effects ; Clinical Trials as Topic ; Dehydrogenases ; Disease Progression ; Drug delivery ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Electron transport ; Electron transport chain ; Electron Transport Chain Complex Proteins - drug effects ; Electron Transport Chain Complex Proteins - metabolism ; Gene Expression Regulation, Neoplastic - drug effects ; Homeostasis ; Humans ; Metabolism ; Metabolites ; mitocans ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; mitochondrial targeting ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Organelles ; Oxidation-Reduction - drug effects ; Respiration ; Review ; Signal transduction ; Signal Transduction - drug effects ; Tricarboxylic acid cycle ; Tumorigenesis ; Tumors ; Vitamin E</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (21), p.7941</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523</citedby><cites>FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523</cites><orcidid>0000-0003-0366-9482 ; 0000-0002-5798-5264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548646389/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548646389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33114695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Lanfeng</creatorcontrib><creatorcontrib>Gopalan, Vinod</creatorcontrib><creatorcontrib>Holland, Olivia</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><title>Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.</description><subject>Adenosine triphosphate</subject><subject>anti-cancer strategy</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Bioenergetics</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Citric Acid Cycle - drug effects</subject><subject>Clinical Trials as Topic</subject><subject>Dehydrogenases</subject><subject>Disease Progression</subject><subject>Drug delivery</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Electron Transport Chain Complex Proteins - drug effects</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mitocans</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial targeting</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Organelles</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Respiration</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Vitamin E</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkctrGzEQxkVoyfuWc1noNZtq9NpVD4Vg0iTgUgjOWYwea8vYK1daB_LfdxMnwTnNMPPxm2_4CLkAesW5pj_icl0YMGi0gANyDIKxmlLVfNnrj8hJKUtKGWdSH5IjzgGE0vKYTP_EITnsS_UQnmKJQ_A_q9fZIvU-R1xVM8zzMMR-XmGpbrouuhj6obruh1hPsHchV7NFyLh5PiNfO1yVcP5WT8nj75vZ5K6e_r29n1xPayeFGGodGA_c2tGP1NBYL1rLgQuHDqig0llo0UuwSkqQSgmhNXbQOStZFyTjp-R-x_UJl2aT4xrzs0kYzesg5bnBPES3CkYjomydcLK1goNCgaGj3ntohG74C-vXjrXZ2nXwbnwt4-oT9POmjwszT0-mUYqrVo6A72-AnP5tQxnMMm1zP_5vmBStEoq3elRd7lQup1Jy6D4uADUvOZr9HEf5t31XH-L34Ph_LPCZBg</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Dong, Lanfeng</creator><creator>Gopalan, Vinod</creator><creator>Holland, Olivia</creator><creator>Neuzil, Jiri</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0366-9482</orcidid><orcidid>https://orcid.org/0000-0002-5798-5264</orcidid></search><sort><creationdate>20201026</creationdate><title>Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy</title><author>Dong, Lanfeng ; Gopalan, Vinod ; Holland, Olivia ; Neuzil, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>anti-cancer strategy</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Bioenergetics</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Citric Acid Cycle - drug effects</topic><topic>Clinical Trials as Topic</topic><topic>Dehydrogenases</topic><topic>Disease Progression</topic><topic>Drug delivery</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Electron Transport Chain Complex Proteins - drug effects</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mitocans</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial targeting</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Organelles</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Respiration</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lanfeng</creatorcontrib><creatorcontrib>Gopalan, Vinod</creatorcontrib><creatorcontrib>Holland, Olivia</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lanfeng</au><au>Gopalan, Vinod</au><au>Holland, Olivia</au><au>Neuzil, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>21</volume><issue>21</issue><spage>7941</spage><pages>7941-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33114695</pmid><doi>10.3390/ijms21217941</doi><orcidid>https://orcid.org/0000-0003-0366-9482</orcidid><orcidid>https://orcid.org/0000-0002-5798-5264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-10, Vol.21 (21), p.7941
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9aaa58c4c58b4316a4aef0ddd1749732
source Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Adenosine triphosphate
anti-cancer strategy
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Binding sites
Bioenergetics
Biosynthesis
Cancer
Cancer therapies
Cell death
Citric Acid Cycle - drug effects
Clinical Trials as Topic
Dehydrogenases
Disease Progression
Drug delivery
Drug resistance
Drug Resistance, Neoplasm - drug effects
Electron transport
Electron transport chain
Electron Transport Chain Complex Proteins - drug effects
Electron Transport Chain Complex Proteins - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Homeostasis
Humans
Metabolism
Metabolites
mitocans
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial DNA
mitochondrial targeting
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - metabolism
Organelles
Oxidation-Reduction - drug effects
Respiration
Review
Signal transduction
Signal Transduction - drug effects
Tricarboxylic acid cycle
Tumorigenesis
Tumors
Vitamin E
title Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitocans%20Revisited:%20Mitochondrial%20Targeting%20as%20Efficient%20Anti-Cancer%20Therapy&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Dong,%20Lanfeng&rft.date=2020-10-26&rft.volume=21&rft.issue=21&rft.spage=7941&rft.pages=7941-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21217941&rft_dat=%3Cproquest_doaj_%3E2548646389%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-9e23e3bb0025917bd48b3134cac10405cb18ad51b65515664499af1fcb52fe523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548646389&rft_id=info:pmid/33114695&rfr_iscdi=true