Loading…

Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG), to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND). Mesoporous silica nanospheres (MSNs) were synthesized...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of pharmceutical sciences 2014-08, Vol.9 (4), p.183-190
Main Authors: Hu, Liang, Sun, Changshan, Song, Aihua, Chang, Di, Zheng, Xin, Gao, Yikun, Jiang, Tongying, Wang, Siling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG), to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND). Mesoporous silica nanospheres (MSNs) were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs), IND loaded AP-MSNs (IND-AP-MSNs) were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs) were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.
ISSN:1818-0876
2221-285X
DOI:10.1016/j.ajps.2014.05.004