Loading…

Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone

Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection met...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-11, Vol.19 (21), p.4812
Main Authors: Foysal, Kamrul H, Seo, Sung Eun, Kim, Min Ju, Kwon, Oh Seok, Chong, Jo Woon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513
cites cdi_FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513
container_end_page
container_issue 21
container_start_page 4812
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Foysal, Kamrul H
Seo, Sung Eun
Kim, Min Ju
Kwon, Oh Seok
Chong, Jo Woon
description Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin-10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.
doi_str_mv 10.3390/s19214812
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ab014ad26ea4189bfd2a66831e47307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ab014ad26ea4189bfd2a66831e47307</doaj_id><sourcerecordid>2312808644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513</originalsourceid><addsrcrecordid>eNpdkdFuFCEUhonR2Fq98AUMiTd6sQoHhoEbk01ttckmxmivyRlgtrOZHVZgavbtpW7dtF5xAl--_IefkNecfRDCsI-ZG-BSc3hCTrkEudAA7OmD-YS8yHnDGAgh9HNyIrgyEjQ_JRfLCcd9CfT7jFMZyp5-DiW4MsSJ9ilu6QpLSDjSyzH-psuccU-v8zCtKdIfW0xldxOn8JI863HM4dX9eUauLy9-nn9drL59uTpfrhZOKlMWxkFj0GnuOxRGMmh640EwkE4w3rY9Nxp6wNb7rk4YemW6rvXGq9ZDw8UZuTp4fcSN3aWhJtjbiIP9exHT2tZIgxuDNdgxLtGDCii5Nl3vAZXSggfZCtZW16eDazd32-BdmErd85H08cs03Nh1vLVKK6mYrIJ394IUf80hF7sdsgvjiFOIc7YgOGhW4Tv07X_oJs6p_nylGtFIzaTWlXp_oFyKOafQH8NwZu-KtseiK_vmYfoj-a9Z8QdWEKFs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535480488</pqid></control><display><type>article</type><title>Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Foysal, Kamrul H ; Seo, Sung Eun ; Kim, Min Ju ; Kwon, Oh Seok ; Chong, Jo Woon</creator><creatorcontrib>Foysal, Kamrul H ; Seo, Sung Eun ; Kim, Min Ju ; Kwon, Oh Seok ; Chong, Jo Woon</creatorcontrib><description>Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin-10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19214812</identifier><identifier>PMID: 31694281</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Albumins ; analyte detection ; Automation ; Cameras ; Image processing ; lfa pad ; lfa reader ; Lighting ; Methods ; Nanoparticles ; Point of care testing ; Proteins ; Quantitative analysis ; smartphone ; Smartphones ; Strip ; Support vector machines ; Test procedures</subject><ispartof>Sensors (Basel, Switzerland), 2019-11, Vol.19 (21), p.4812</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513</citedby><cites>FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535480488/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535480488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31694281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foysal, Kamrul H</creatorcontrib><creatorcontrib>Seo, Sung Eun</creatorcontrib><creatorcontrib>Kim, Min Ju</creatorcontrib><creatorcontrib>Kwon, Oh Seok</creatorcontrib><creatorcontrib>Chong, Jo Woon</creatorcontrib><title>Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin-10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.</description><subject>Albumins</subject><subject>analyte detection</subject><subject>Automation</subject><subject>Cameras</subject><subject>Image processing</subject><subject>lfa pad</subject><subject>lfa reader</subject><subject>Lighting</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Point of care testing</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>smartphone</subject><subject>Smartphones</subject><subject>Strip</subject><subject>Support vector machines</subject><subject>Test procedures</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdFuFCEUhonR2Fq98AUMiTd6sQoHhoEbk01ttckmxmivyRlgtrOZHVZgavbtpW7dtF5xAl--_IefkNecfRDCsI-ZG-BSc3hCTrkEudAA7OmD-YS8yHnDGAgh9HNyIrgyEjQ_JRfLCcd9CfT7jFMZyp5-DiW4MsSJ9ilu6QpLSDjSyzH-psuccU-v8zCtKdIfW0xldxOn8JI863HM4dX9eUauLy9-nn9drL59uTpfrhZOKlMWxkFj0GnuOxRGMmh640EwkE4w3rY9Nxp6wNb7rk4YemW6rvXGq9ZDw8UZuTp4fcSN3aWhJtjbiIP9exHT2tZIgxuDNdgxLtGDCii5Nl3vAZXSggfZCtZW16eDazd32-BdmErd85H08cs03Nh1vLVKK6mYrIJ394IUf80hF7sdsgvjiFOIc7YgOGhW4Tv07X_oJs6p_nylGtFIzaTWlXp_oFyKOafQH8NwZu-KtseiK_vmYfoj-a9Z8QdWEKFs</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Foysal, Kamrul H</creator><creator>Seo, Sung Eun</creator><creator>Kim, Min Ju</creator><creator>Kwon, Oh Seok</creator><creator>Chong, Jo Woon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20191105</creationdate><title>Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone</title><author>Foysal, Kamrul H ; Seo, Sung Eun ; Kim, Min Ju ; Kwon, Oh Seok ; Chong, Jo Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Albumins</topic><topic>analyte detection</topic><topic>Automation</topic><topic>Cameras</topic><topic>Image processing</topic><topic>lfa pad</topic><topic>lfa reader</topic><topic>Lighting</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Point of care testing</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>smartphone</topic><topic>Smartphones</topic><topic>Strip</topic><topic>Support vector machines</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foysal, Kamrul H</creatorcontrib><creatorcontrib>Seo, Sung Eun</creatorcontrib><creatorcontrib>Kim, Min Ju</creatorcontrib><creatorcontrib>Kwon, Oh Seok</creatorcontrib><creatorcontrib>Chong, Jo Woon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foysal, Kamrul H</au><au>Seo, Sung Eun</au><au>Kim, Min Ju</au><au>Kwon, Oh Seok</au><au>Chong, Jo Woon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-11-05</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><spage>4812</spage><pages>4812-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Lateral flow assay (LFA) technology has recently received interest in the biochemical field since it is simple, low-cost, and rapid, while conventional laboratory test procedures are complicated, expensive, and time-consuming. In this paper, we propose a robust smartphone-based analyte detection method that estimates the amount of analyte on an LFA strip using a smartphone camera. The proposed method can maintain high estimation accuracy under various illumination conditions without additional devices, unlike conventional methods. The robustness and simplicity of the proposed method are enabled by novel image processing and machine learning techniques. For the performance analysis, we applied the proposed method to LFA strips where the target analyte is albumin protein of human serum. We use two sets of training LFA strips and one set of testing LFA strips. Here, each set consists of five strips having different quantities of albumin-10 femtograms, 100 femtograms, 1 picogram, 10 picograms, and 100 picograms. A linear regression analysis approximates the analyte quantity, and then machine learning classifier, support vector machine (SVM), which is trained by the regression results, classifies the analyte quantity on the LFA strip in an optimal way. Experimental results show that the proposed smartphone application can detect the quantity of albumin protein on a test LFA set with 98% accuracy, on average, in real time.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31694281</pmid><doi>10.3390/s19214812</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-11, Vol.19 (21), p.4812
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9ab014ad26ea4189bfd2a66831e47307
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Albumins
analyte detection
Automation
Cameras
Image processing
lfa pad
lfa reader
Lighting
Methods
Nanoparticles
Point of care testing
Proteins
Quantitative analysis
smartphone
Smartphones
Strip
Support vector machines
Test procedures
title Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyte%20Quantity%20Detection%20from%20Lateral%20Flow%20Assay%20Using%20a%20Smartphone&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Foysal,%20Kamrul%20H&rft.date=2019-11-05&rft.volume=19&rft.issue=21&rft.spage=4812&rft.pages=4812-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19214812&rft_dat=%3Cproquest_doaj_%3E2312808644%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-9c259ac81dba394025f9d23024c30177f1982f2a7ddb982aef69bb7d9d67d2513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535480488&rft_id=info:pmid/31694281&rfr_iscdi=true