Loading…

Drift transport of helical spin coherence with tailored spin–orbit interactions

Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-03, Vol.7 (1), p.10722-10722, Article 10722
Main Authors: Kunihashi, Y., Sanada, H., Gotoh, H., Onomitsu, K., Kohda, M., Nitta, J., Sogawa, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3
cites cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3
container_end_page 10722
container_issue 1
container_start_page 10722
container_title Nature communications
container_volume 7
creator Kunihashi, Y.
Sanada, H.
Gotoh, H.
Onomitsu, K.
Kohda, M.
Nitta, J.
Sogawa, T.
description Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.
doi_str_mv 10.1038/ncomms10722
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9af4837a498c45bea045a2101db43004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9af4837a498c45bea045a2101db43004</doaj_id><sourcerecordid>1771726150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</originalsourceid><addsrcrecordid>eNptkU1rVDEUhoMotoxduZcLboQ6NScfk3s3gtSvQkEEXYfc3JOZDPcmY5KxdNf_4D_0lxhn2jIVs0nIeXjO4byEPAd6BpS3b4KN05SBKsYekWNGBcxBMf744H1ETnJe03p4B60QT8kRW3SSAeuOydf3ybvSlGRC3sRUmuiaFY7emrHJGx8aG1eYMFhsrnxZNcX4MSYcdsXfN79i6n1pfCiYjC0-hvyMPHFmzHhye8_I948fvp1_nl9--XRx_u5ybiWwMu-ldIL2zkBrmANFB2NlBwMH2hoBFiQo11mJrs4pLe2B912HqDhyzkzPZ-Ri7x2iWetN8pNJ1zoar3cfMS21ScXbEXVnnGi5MqJrrZA9GiqkYUBh6AWnVFTX271rs-0nHCyGupDxgfRhJfiVXsafWqh2oap7Rl7dClL8scVc9OSzxXE0AeM2a1CqRrEASSv68h90Hbcp1FXtKMYpr6HNyOmesinmnNDdDwNU_01eHyRf6ReH89-zdzlX4PUeyLUUlpgOmv7H9weRQLp9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771230372</pqid></control><display><type>article</type><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><source>Nature_系列刊</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</creator><creatorcontrib>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</creatorcontrib><description>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10722</identifier><identifier>PMID: 26952129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1000 ; 639/766/119/1001 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-03, Vol.7 (1), p.10722-10722, Article 10722</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</citedby><cites>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771230372/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771230372?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26952129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunihashi, Y.</creatorcontrib><creatorcontrib>Sanada, H.</creatorcontrib><creatorcontrib>Gotoh, H.</creatorcontrib><creatorcontrib>Onomitsu, K.</creatorcontrib><creatorcontrib>Kohda, M.</creatorcontrib><creatorcontrib>Nitta, J.</creatorcontrib><creatorcontrib>Sogawa, T.</creatorcontrib><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</description><subject>639/301/119/1000</subject><subject>639/766/119/1001</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rVDEUhoMotoxduZcLboQ6NScfk3s3gtSvQkEEXYfc3JOZDPcmY5KxdNf_4D_0lxhn2jIVs0nIeXjO4byEPAd6BpS3b4KN05SBKsYekWNGBcxBMf744H1ETnJe03p4B60QT8kRW3SSAeuOydf3ybvSlGRC3sRUmuiaFY7emrHJGx8aG1eYMFhsrnxZNcX4MSYcdsXfN79i6n1pfCiYjC0-hvyMPHFmzHhye8_I948fvp1_nl9--XRx_u5ybiWwMu-ldIL2zkBrmANFB2NlBwMH2hoBFiQo11mJrs4pLe2B912HqDhyzkzPZ-Ri7x2iWetN8pNJ1zoar3cfMS21ScXbEXVnnGi5MqJrrZA9GiqkYUBh6AWnVFTX271rs-0nHCyGupDxgfRhJfiVXsafWqh2oap7Rl7dClL8scVc9OSzxXE0AeM2a1CqRrEASSv68h90Hbcp1FXtKMYpr6HNyOmesinmnNDdDwNU_01eHyRf6ReH89-zdzlX4PUeyLUUlpgOmv7H9weRQLp9</recordid><startdate>20160308</startdate><enddate>20160308</enddate><creator>Kunihashi, Y.</creator><creator>Sanada, H.</creator><creator>Gotoh, H.</creator><creator>Onomitsu, K.</creator><creator>Kohda, M.</creator><creator>Nitta, J.</creator><creator>Sogawa, T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160308</creationdate><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><author>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/1000</topic><topic>639/766/119/1001</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunihashi, Y.</creatorcontrib><creatorcontrib>Sanada, H.</creatorcontrib><creatorcontrib>Gotoh, H.</creatorcontrib><creatorcontrib>Onomitsu, K.</creatorcontrib><creatorcontrib>Kohda, M.</creatorcontrib><creatorcontrib>Nitta, J.</creatorcontrib><creatorcontrib>Sogawa, T.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunihashi, Y.</au><au>Sanada, H.</au><au>Gotoh, H.</au><au>Onomitsu, K.</au><au>Kohda, M.</au><au>Nitta, J.</au><au>Sogawa, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift transport of helical spin coherence with tailored spin–orbit interactions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-03-08</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10722</spage><epage>10722</epage><pages>10722-10722</pages><artnum>10722</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26952129</pmid><doi>10.1038/ncomms10722</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-03, Vol.7 (1), p.10722-10722, Article 10722
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9af4837a498c45bea045a2101db43004
source Nature_系列刊; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/1000
639/766/119/1001
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Drift transport of helical spin coherence with tailored spin–orbit interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift%20transport%20of%20helical%20spin%20coherence%20with%20tailored%20spin%E2%80%93orbit%20interactions&rft.jtitle=Nature%20communications&rft.au=Kunihashi,%20Y.&rft.date=2016-03-08&rft.volume=7&rft.issue=1&rft.spage=10722&rft.epage=10722&rft.pages=10722-10722&rft.artnum=10722&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10722&rft_dat=%3Cproquest_doaj_%3E1771726150%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771230372&rft_id=info:pmid/26952129&rfr_iscdi=true