Loading…
Drift transport of helical spin coherence with tailored spin–orbit interactions
Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins...
Saved in:
Published in: | Nature communications 2016-03, Vol.7 (1), p.10722-10722, Article 10722 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3 |
container_end_page | 10722 |
container_issue | 1 |
container_start_page | 10722 |
container_title | Nature communications |
container_volume | 7 |
creator | Kunihashi, Y. Sanada, H. Gotoh, H. Onomitsu, K. Kohda, M. Nitta, J. Sogawa, T. |
description | Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages.
Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport. |
doi_str_mv | 10.1038/ncomms10722 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9af4837a498c45bea045a2101db43004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9af4837a498c45bea045a2101db43004</doaj_id><sourcerecordid>1771726150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</originalsourceid><addsrcrecordid>eNptkU1rVDEUhoMotoxduZcLboQ6NScfk3s3gtSvQkEEXYfc3JOZDPcmY5KxdNf_4D_0lxhn2jIVs0nIeXjO4byEPAd6BpS3b4KN05SBKsYekWNGBcxBMf744H1ETnJe03p4B60QT8kRW3SSAeuOydf3ybvSlGRC3sRUmuiaFY7emrHJGx8aG1eYMFhsrnxZNcX4MSYcdsXfN79i6n1pfCiYjC0-hvyMPHFmzHhye8_I948fvp1_nl9--XRx_u5ybiWwMu-ldIL2zkBrmANFB2NlBwMH2hoBFiQo11mJrs4pLe2B912HqDhyzkzPZ-Ri7x2iWetN8pNJ1zoar3cfMS21ScXbEXVnnGi5MqJrrZA9GiqkYUBh6AWnVFTX271rs-0nHCyGupDxgfRhJfiVXsafWqh2oap7Rl7dClL8scVc9OSzxXE0AeM2a1CqRrEASSv68h90Hbcp1FXtKMYpr6HNyOmesinmnNDdDwNU_01eHyRf6ReH89-zdzlX4PUeyLUUlpgOmv7H9weRQLp9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771230372</pqid></control><display><type>article</type><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><source>Nature_系列刊</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</creator><creatorcontrib>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</creatorcontrib><description>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages.
Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10722</identifier><identifier>PMID: 26952129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1000 ; 639/766/119/1001 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-03, Vol.7 (1), p.10722-10722, Article 10722</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</citedby><cites>FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771230372/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771230372?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26952129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunihashi, Y.</creatorcontrib><creatorcontrib>Sanada, H.</creatorcontrib><creatorcontrib>Gotoh, H.</creatorcontrib><creatorcontrib>Onomitsu, K.</creatorcontrib><creatorcontrib>Kohda, M.</creatorcontrib><creatorcontrib>Nitta, J.</creatorcontrib><creatorcontrib>Sogawa, T.</creatorcontrib><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages.
Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</description><subject>639/301/119/1000</subject><subject>639/766/119/1001</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rVDEUhoMotoxduZcLboQ6NScfk3s3gtSvQkEEXYfc3JOZDPcmY5KxdNf_4D_0lxhn2jIVs0nIeXjO4byEPAd6BpS3b4KN05SBKsYekWNGBcxBMf744H1ETnJe03p4B60QT8kRW3SSAeuOydf3ybvSlGRC3sRUmuiaFY7emrHJGx8aG1eYMFhsrnxZNcX4MSYcdsXfN79i6n1pfCiYjC0-hvyMPHFmzHhye8_I948fvp1_nl9--XRx_u5ybiWwMu-ldIL2zkBrmANFB2NlBwMH2hoBFiQo11mJrs4pLe2B912HqDhyzkzPZ-Ri7x2iWetN8pNJ1zoar3cfMS21ScXbEXVnnGi5MqJrrZA9GiqkYUBh6AWnVFTX271rs-0nHCyGupDxgfRhJfiVXsafWqh2oap7Rl7dClL8scVc9OSzxXE0AeM2a1CqRrEASSv68h90Hbcp1FXtKMYpr6HNyOmesinmnNDdDwNU_01eHyRf6ReH89-zdzlX4PUeyLUUlpgOmv7H9weRQLp9</recordid><startdate>20160308</startdate><enddate>20160308</enddate><creator>Kunihashi, Y.</creator><creator>Sanada, H.</creator><creator>Gotoh, H.</creator><creator>Onomitsu, K.</creator><creator>Kohda, M.</creator><creator>Nitta, J.</creator><creator>Sogawa, T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160308</creationdate><title>Drift transport of helical spin coherence with tailored spin–orbit interactions</title><author>Kunihashi, Y. ; Sanada, H. ; Gotoh, H. ; Onomitsu, K. ; Kohda, M. ; Nitta, J. ; Sogawa, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/1000</topic><topic>639/766/119/1001</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunihashi, Y.</creatorcontrib><creatorcontrib>Sanada, H.</creatorcontrib><creatorcontrib>Gotoh, H.</creatorcontrib><creatorcontrib>Onomitsu, K.</creatorcontrib><creatorcontrib>Kohda, M.</creatorcontrib><creatorcontrib>Nitta, J.</creatorcontrib><creatorcontrib>Sogawa, T.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunihashi, Y.</au><au>Sanada, H.</au><au>Gotoh, H.</au><au>Onomitsu, K.</au><au>Kohda, M.</au><au>Nitta, J.</au><au>Sogawa, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift transport of helical spin coherence with tailored spin–orbit interactions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-03-08</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10722</spage><epage>10722</epage><pages>10722-10722</pages><artnum>10722</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages.
Spin-orbit effects in non-magnetic semiconductors allow for the manipulation of electronic spins in the absence of an applied magnetic field. Here, the authors exploit a persistent spin helix state in single quantum wells to enhance the coherence length of electronic drift transport.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26952129</pmid><doi>10.1038/ncomms10722</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-03, Vol.7 (1), p.10722-10722, Article 10722 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9af4837a498c45bea045a2101db43004 |
source | Nature_系列刊; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/1000 639/766/119/1001 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Drift transport of helical spin coherence with tailored spin–orbit interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift%20transport%20of%20helical%20spin%20coherence%20with%20tailored%20spin%E2%80%93orbit%20interactions&rft.jtitle=Nature%20communications&rft.au=Kunihashi,%20Y.&rft.date=2016-03-08&rft.volume=7&rft.issue=1&rft.spage=10722&rft.epage=10722&rft.pages=10722-10722&rft.artnum=10722&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10722&rft_dat=%3Cproquest_doaj_%3E1771726150%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-b55f40bfa18a2f170dac591d3108a41c1517f9c5ef1295c0b13b99ee73e332ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771230372&rft_id=info:pmid/26952129&rfr_iscdi=true |