Loading…
Decoding the Capability of Lactobacillus plantarum W1 Isolated from Soybean Whey in Producing an Exopolysaccharide
This study aims at producing exopolysaccharides (EPS) from a lactic acid bacterial strain. The soybean whey-isolated Lactobacillus plantarum W1 (EPS-W1), which belongs to genus Lactobacillus, is identified using the phenylalanyl-tRNA sequencing method. Of all the examined strains, R-49778 (as number...
Saved in:
Published in: | ACS omega 2020-12, Vol.5 (51), p.33387-33394 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aims at producing exopolysaccharides (EPS) from a lactic acid bacterial strain. The soybean whey-isolated Lactobacillus plantarum W1 (EPS-W1), which belongs to genus Lactobacillus, is identified using the phenylalanyl-tRNA sequencing method. Of all the examined strains, R-49778 (as numbered by BCCM/LMG Bacteria Collection, Ghent University, Belgium) showed the highest capability of producing exopolysaccharides. Structural characterization revealed a novel exopolysaccharide consisting of repeating units of →6)-d-Glcp-(1→; →3)-d-Manp-(1→; →3)-d-Glcp-(1→ and a branch of →6)-d-Manp-(1→; →2)-d-Glcp-(1→. This discovery opens up avenues for the production of EPS for food industries, functional foods, and biomedical applications. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c05256 |