Loading…
Decision-Making Algorithm with Geographic Mobility for Cognitive Radio
The proposed novel algorithm named decision-making algorithm with geographic mobility (DMAGM) includes detailed analysis of decision-making for cognitive radio (CR) that considers a multivariable algorithm with geographic mobility (GM). Scarce research work considers the analysis of GM in depth, eve...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-02, Vol.24 (5), p.1540 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The proposed novel algorithm named decision-making algorithm with geographic mobility (DMAGM) includes detailed analysis of decision-making for cognitive radio (CR) that considers a multivariable algorithm with geographic mobility (GM). Scarce research work considers the analysis of GM in depth, even though it plays a crucial role to improve communication performance. The DMAGM considerably reduces latency in order to accurately determine the best communication channels and includes GM analysis, which is not addressed in other algorithms found in the literature. The DMAGM was evaluated and validated by simulating a cognitive radio network that comprises a base station (BS), primary users (PUs), and CRs considering random arrivals and disappearance of mobile devices. The proposed algorithm exhibits better performance, through the reduction in latency and computational complexity, than other algorithms used for comparison using 200 channel tests per simulation. The DMAGM significantly reduces the decision-making process from 12.77% to 94.27% compared with ATDDiM, FAHP, AHP, and Dijkstra algorithms in terms of latency reduction. An improved version of the DMAGM is also proposed where feedback of the output is incorporated. This version is named feedback-decision-making algorithm with geographic mobility (FDMAGM), and it shows that a feedback system has the advantage of being able to continually adjust and adapt based on the feedback received. In addition, the feedback version helps to identify and correct problems, which can be beneficial in situations where the quality of communication is critical. Despite the fact that the FDMAGM may take longer than the DMAGM to calculate the best communication channel, constant feedback improves efficiency and effectiveness over time. Both the DMAGM and the FDMAGM improve performance in practical scenarios, the former in terms of latency and the latter in terms of accuracy and stability. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24051540 |