Loading…

The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method

The power requirements of grids have risen as artificial intelligence and electric vehicle technologies have been used. Thus, the installation of distributed generators (DGs) has become an essential factor to streamline power grids. The objective of this study is to optimize the capacity and locatio...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-01, Vol.14 (2), p.418
Main Authors: Kim, Beopsoo, Rusetskii, Nikita, Jo, Haesung, Kim, Insu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73
cites cdi_FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73
container_end_page
container_issue 2
container_start_page 418
container_title Energies (Basel)
container_volume 14
creator Kim, Beopsoo
Rusetskii, Nikita
Jo, Haesung
Kim, Insu
description The power requirements of grids have risen as artificial intelligence and electric vehicle technologies have been used. Thus, the installation of distributed generators (DGs) has become an essential factor to streamline power grids. The objective of this study is to optimize the capacity and location of DGs. For this purpose, an objective function was defined, which takes into account the fault current and the levelized cost of energy, and a modified particle swarm optimization method was applied. Then, we analyzed a case of a single line-to-ground fault with a test feeder (i.e., the IEEE 30 bus system) with no DGs connected, as well as a case where the DGs are optimally connected. The effect of the optimally allocated DGs on the system was analyzed. We discuss an optimal layout method that takes the economic efficiency of the DG installation into account.
doi_str_mv 10.3390/en14020418
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9b2c202c03964b2db7e598e2dad1cf65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9b2c202c03964b2db7e598e2dad1cf65</doaj_id><sourcerecordid>2478411143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73</originalsourceid><addsrcrecordid>eNpNUV9LHDEQX0qFivrSTxDoW-HaZGd3kzzKVq1wYkF9DtlkcuZYN9ck26Kfox_YnCvamYcZhvn9YaaqPjP6DUDS7zixhta0YeJDdcik7FaMcvj4X_-pOklpS0sAMAA4rP7d3iO53mX_oEdyOo7B6OzDRIIjP3zK0Q9zRksucMKoc4iJ9GFK3mL004ac63nMpJ9jxCkTPVmyxj84-qcC6UPKe5qzgtw8kru0B-Si9kvH7M2I5Oavjg-LuH9aZK8w3wd7XB04PSY8ea1H1d352W3_c7W-vrjsT9crAx3Lqw46J6CRg-SudVo452BoheMdSi2FHUwrSjKONWhgBgS2AgfNuTWssRyOqsuF1wa9VbtYjhAfVdBevQxC3KhXr0oOtalpbSjIrhlqO3BspcDaasuM69rC9WXh2sXwe8aU1TbMcSr2Vd1w0TDGGihbX5ctE0NKEd2bKqNq_0T1_kR4Bo-0kJk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478411143</pqid></control><display><type>article</type><title>The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method</title><source>Publicly Available Content Database</source><creator>Kim, Beopsoo ; Rusetskii, Nikita ; Jo, Haesung ; Kim, Insu</creator><creatorcontrib>Kim, Beopsoo ; Rusetskii, Nikita ; Jo, Haesung ; Kim, Insu</creatorcontrib><description>The power requirements of grids have risen as artificial intelligence and electric vehicle technologies have been used. Thus, the installation of distributed generators (DGs) has become an essential factor to streamline power grids. The objective of this study is to optimize the capacity and location of DGs. For this purpose, an objective function was defined, which takes into account the fault current and the levelized cost of energy, and a modified particle swarm optimization method was applied. Then, we analyzed a case of a single line-to-ground fault with a test feeder (i.e., the IEEE 30 bus system) with no DGs connected, as well as a case where the DGs are optimally connected. The effect of the optimally allocated DGs on the system was analyzed. We discuss an optimal layout method that takes the economic efficiency of the DG installation into account.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14020418</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Artificial intelligence ; Current distribution ; Distributed generation ; distributed generator (DG) ; Electric power grids ; Electric vehicles ; Emission standards ; Energy industry ; fault analysis ; Fault diagnosis ; Generators ; Industrial plant emissions ; Installation ; levelized cost of energy ; Methods ; Nuclear power plants ; Objective function ; Optimization ; particle swarm optimization (PSO) ; single line-to-ground fault ; Wind power</subject><ispartof>Energies (Basel), 2021-01, Vol.14 (2), p.418</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73</citedby><cites>FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73</cites><orcidid>0000-0002-2529-4098 ; 0000-0001-8986-5016 ; 0000-0002-8635-5296 ; 0000-0002-4732-9562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478411143/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478411143?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kim, Beopsoo</creatorcontrib><creatorcontrib>Rusetskii, Nikita</creatorcontrib><creatorcontrib>Jo, Haesung</creatorcontrib><creatorcontrib>Kim, Insu</creatorcontrib><title>The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method</title><title>Energies (Basel)</title><description>The power requirements of grids have risen as artificial intelligence and electric vehicle technologies have been used. Thus, the installation of distributed generators (DGs) has become an essential factor to streamline power grids. The objective of this study is to optimize the capacity and location of DGs. For this purpose, an objective function was defined, which takes into account the fault current and the levelized cost of energy, and a modified particle swarm optimization method was applied. Then, we analyzed a case of a single line-to-ground fault with a test feeder (i.e., the IEEE 30 bus system) with no DGs connected, as well as a case where the DGs are optimally connected. The effect of the optimally allocated DGs on the system was analyzed. We discuss an optimal layout method that takes the economic efficiency of the DG installation into account.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Current distribution</subject><subject>Distributed generation</subject><subject>distributed generator (DG)</subject><subject>Electric power grids</subject><subject>Electric vehicles</subject><subject>Emission standards</subject><subject>Energy industry</subject><subject>fault analysis</subject><subject>Fault diagnosis</subject><subject>Generators</subject><subject>Industrial plant emissions</subject><subject>Installation</subject><subject>levelized cost of energy</subject><subject>Methods</subject><subject>Nuclear power plants</subject><subject>Objective function</subject><subject>Optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>single line-to-ground fault</subject><subject>Wind power</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV9LHDEQX0qFivrSTxDoW-HaZGd3kzzKVq1wYkF9DtlkcuZYN9ck26Kfox_YnCvamYcZhvn9YaaqPjP6DUDS7zixhta0YeJDdcik7FaMcvj4X_-pOklpS0sAMAA4rP7d3iO53mX_oEdyOo7B6OzDRIIjP3zK0Q9zRksucMKoc4iJ9GFK3mL004ac63nMpJ9jxCkTPVmyxj84-qcC6UPKe5qzgtw8kru0B-Si9kvH7M2I5Oavjg-LuH9aZK8w3wd7XB04PSY8ea1H1d352W3_c7W-vrjsT9crAx3Lqw46J6CRg-SudVo452BoheMdSi2FHUwrSjKONWhgBgS2AgfNuTWssRyOqsuF1wa9VbtYjhAfVdBevQxC3KhXr0oOtalpbSjIrhlqO3BspcDaasuM69rC9WXh2sXwe8aU1TbMcSr2Vd1w0TDGGihbX5ctE0NKEd2bKqNq_0T1_kR4Bo-0kJk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kim, Beopsoo</creator><creator>Rusetskii, Nikita</creator><creator>Jo, Haesung</creator><creator>Kim, Insu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2529-4098</orcidid><orcidid>https://orcid.org/0000-0001-8986-5016</orcidid><orcidid>https://orcid.org/0000-0002-8635-5296</orcidid><orcidid>https://orcid.org/0000-0002-4732-9562</orcidid></search><sort><creationdate>20210101</creationdate><title>The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method</title><author>Kim, Beopsoo ; Rusetskii, Nikita ; Jo, Haesung ; Kim, Insu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Current distribution</topic><topic>Distributed generation</topic><topic>distributed generator (DG)</topic><topic>Electric power grids</topic><topic>Electric vehicles</topic><topic>Emission standards</topic><topic>Energy industry</topic><topic>fault analysis</topic><topic>Fault diagnosis</topic><topic>Generators</topic><topic>Industrial plant emissions</topic><topic>Installation</topic><topic>levelized cost of energy</topic><topic>Methods</topic><topic>Nuclear power plants</topic><topic>Objective function</topic><topic>Optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>single line-to-ground fault</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Beopsoo</creatorcontrib><creatorcontrib>Rusetskii, Nikita</creatorcontrib><creatorcontrib>Jo, Haesung</creatorcontrib><creatorcontrib>Kim, Insu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Beopsoo</au><au>Rusetskii, Nikita</au><au>Jo, Haesung</au><au>Kim, Insu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method</atitle><jtitle>Energies (Basel)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>418</spage><pages>418-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The power requirements of grids have risen as artificial intelligence and electric vehicle technologies have been used. Thus, the installation of distributed generators (DGs) has become an essential factor to streamline power grids. The objective of this study is to optimize the capacity and location of DGs. For this purpose, an objective function was defined, which takes into account the fault current and the levelized cost of energy, and a modified particle swarm optimization method was applied. Then, we analyzed a case of a single line-to-ground fault with a test feeder (i.e., the IEEE 30 bus system) with no DGs connected, as well as a case where the DGs are optimally connected. The effect of the optimally allocated DGs on the system was analyzed. We discuss an optimal layout method that takes the economic efficiency of the DG installation into account.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14020418</doi><orcidid>https://orcid.org/0000-0002-2529-4098</orcidid><orcidid>https://orcid.org/0000-0001-8986-5016</orcidid><orcidid>https://orcid.org/0000-0002-8635-5296</orcidid><orcidid>https://orcid.org/0000-0002-4732-9562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-01, Vol.14 (2), p.418
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9b2c202c03964b2db7e598e2dad1cf65
source Publicly Available Content Database
subjects Algorithms
Alternative energy sources
Artificial intelligence
Current distribution
Distributed generation
distributed generator (DG)
Electric power grids
Electric vehicles
Emission standards
Energy industry
fault analysis
Fault diagnosis
Generators
Industrial plant emissions
Installation
levelized cost of energy
Methods
Nuclear power plants
Objective function
Optimization
particle swarm optimization (PSO)
single line-to-ground fault
Wind power
title The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Optimal%20Allocation%20of%20Distributed%20Generators%20Considering%20Fault%20Current%20and%20Levelized%20Cost%20of%20Energy%20Using%20the%20Particle%20Swarm%20Optimization%20Method&rft.jtitle=Energies%20(Basel)&rft.au=Kim,%20Beopsoo&rft.date=2021-01-01&rft.volume=14&rft.issue=2&rft.spage=418&rft.pages=418-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14020418&rft_dat=%3Cproquest_doaj_%3E2478411143%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-636f8349b97f5fa8fff3b58f76e9a98dbc5858517e23a31c38e58eba77dc14d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478411143&rft_id=info:pmid/&rfr_iscdi=true