Loading…

Spectral form factor for time-dependent matrix model

A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior i...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2021-03, Vol.2021 (3), p.1-36, Article 71
Main Authors: Mukherjee, Arkaprava, Hikami, Shinobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943
cites cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943
container_end_page 36
container_issue 3
container_start_page 1
container_title The journal of high energy physics
container_volume 2021
creator Mukherjee, Arkaprava
Hikami, Shinobu
description A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of M 1 and M 2 . The numerical evaluation for finite N and analytic expression in the large N are compared for the spectral form factor.
doi_str_mv 10.1007/JHEP03(2021)071
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe</doaj_id><sourcerecordid>2497365088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLg_Dh7LXjRQ92bjzbJUcZ0k4GCeg5pmoyOtplpBvrvzayoF0_Pw8vz8fIgdIHhBgPw6cNi_gT0igDB18DxAZpgIDIXjMvDP_wYnQzDBgAXWMIEseetNTHoNnM-dJnTJvqw51lsOpvXdmv72vYx63QMzXvW-dq2Z-jI6Xaw5994il7v5i-zRb56vF_Oble5KQiPOZGVrEuJUxcRJa1MpSU3VOuaCihtTY3AQmqmAQojC04EL4jkAhwmAiSjp2g55tZeb9Q2NJ0OH8rrRn0dfFgrHWJjWqtkxVhpCXe8KpkBU5UaaALDaF04Z1PW5Zi1Df5tZ4eoNn4X-vS-IkxyWhYgRFJNR5UJfhiCdT-tGNR-ZjXOrPYzqzRzcsDoGJKyX9vwm_uf5RPC5nya</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497365088</pqid></control><display><type>article</type><title>Spectral form factor for time-dependent matrix model</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Mukherjee, Arkaprava ; Hikami, Shinobu</creator><creatorcontrib>Mukherjee, Arkaprava ; Hikami, Shinobu</creatorcontrib><description>A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of M 1 and M 2 . The numerical evaluation for finite N and analytic expression in the large N are compared for the spectral form factor.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2021)071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1/N Expansion ; Behavior ; Classical and Quantum Gravitation ; Elementary Particles ; Form factors ; Fourier transforms ; High energy physics ; Immersion plating ; Matrix Models ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Random Systems ; Regular Article - Theoretical Physics ; Relativity Theory ; Rounding ; Science education ; Spectra ; String Theory ; Time dependence</subject><ispartof>The journal of high energy physics, 2021-03, Vol.2021 (3), p.1-36, Article 71</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</citedby><cites>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2497365088/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2497365088?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mukherjee, Arkaprava</creatorcontrib><creatorcontrib>Hikami, Shinobu</creatorcontrib><title>Spectral form factor for time-dependent matrix model</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of M 1 and M 2 . The numerical evaluation for finite N and analytic expression in the large N are compared for the spectral form factor.</description><subject>1/N Expansion</subject><subject>Behavior</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Form factors</subject><subject>Fourier transforms</subject><subject>High energy physics</subject><subject>Immersion plating</subject><subject>Matrix Models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Random Systems</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Rounding</subject><subject>Science education</subject><subject>Spectra</subject><subject>String Theory</subject><subject>Time dependence</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UE1LwzAYDqLg_Dh7LXjRQ92bjzbJUcZ0k4GCeg5pmoyOtplpBvrvzayoF0_Pw8vz8fIgdIHhBgPw6cNi_gT0igDB18DxAZpgIDIXjMvDP_wYnQzDBgAXWMIEseetNTHoNnM-dJnTJvqw51lsOpvXdmv72vYx63QMzXvW-dq2Z-jI6Xaw5994il7v5i-zRb56vF_Oble5KQiPOZGVrEuJUxcRJa1MpSU3VOuaCihtTY3AQmqmAQojC04EL4jkAhwmAiSjp2g55tZeb9Q2NJ0OH8rrRn0dfFgrHWJjWqtkxVhpCXe8KpkBU5UaaALDaF04Z1PW5Zi1Df5tZ4eoNn4X-vS-IkxyWhYgRFJNR5UJfhiCdT-tGNR-ZjXOrPYzqzRzcsDoGJKyX9vwm_uf5RPC5nya</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mukherjee, Arkaprava</creator><creator>Hikami, Shinobu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Spectral form factor for time-dependent matrix model</title><author>Mukherjee, Arkaprava ; Hikami, Shinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1/N Expansion</topic><topic>Behavior</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Form factors</topic><topic>Fourier transforms</topic><topic>High energy physics</topic><topic>Immersion plating</topic><topic>Matrix Models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Random Systems</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Rounding</topic><topic>Science education</topic><topic>Spectra</topic><topic>String Theory</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Arkaprava</creatorcontrib><creatorcontrib>Hikami, Shinobu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Arkaprava</au><au>Hikami, Shinobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral form factor for time-dependent matrix model</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>2021</volume><issue>3</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><artnum>71</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of M 1 and M 2 . The numerical evaluation for finite N and analytic expression in the large N are compared for the spectral form factor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP03(2021)071</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2021-03, Vol.2021 (3), p.1-36, Article 71
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects 1/N Expansion
Behavior
Classical and Quantum Gravitation
Elementary Particles
Form factors
Fourier transforms
High energy physics
Immersion plating
Matrix Models
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Random Systems
Regular Article - Theoretical Physics
Relativity Theory
Rounding
Science education
Spectra
String Theory
Time dependence
title Spectral form factor for time-dependent matrix model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20form%20factor%20for%20time-dependent%20matrix%20model&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Mukherjee,%20Arkaprava&rft.date=2021-03-01&rft.volume=2021&rft.issue=3&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.artnum=71&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2021)071&rft_dat=%3Cproquest_doaj_%3E2497365088%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497365088&rft_id=info:pmid/&rfr_iscdi=true