Loading…
Spectral form factor for time-dependent matrix model
A bstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N . The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior i...
Saved in:
Published in: | The journal of high energy physics 2021-03, Vol.2021 (3), p.1-36, Article 71 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943 |
container_end_page | 36 |
container_issue | 3 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2021 |
creator | Mukherjee, Arkaprava Hikami, Shinobu |
description | A
bstract
The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size
N
. The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of
M
1
and
M
2
. The numerical evaluation for finite
N
and analytic expression in the large
N
are compared for the spectral form factor. |
doi_str_mv | 10.1007/JHEP03(2021)071 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe</doaj_id><sourcerecordid>2497365088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLg_Dh7LXjRQ92bjzbJUcZ0k4GCeg5pmoyOtplpBvrvzayoF0_Pw8vz8fIgdIHhBgPw6cNi_gT0igDB18DxAZpgIDIXjMvDP_wYnQzDBgAXWMIEseetNTHoNnM-dJnTJvqw51lsOpvXdmv72vYx63QMzXvW-dq2Z-jI6Xaw5994il7v5i-zRb56vF_Oble5KQiPOZGVrEuJUxcRJa1MpSU3VOuaCihtTY3AQmqmAQojC04EL4jkAhwmAiSjp2g55tZeb9Q2NJ0OH8rrRn0dfFgrHWJjWqtkxVhpCXe8KpkBU5UaaALDaF04Z1PW5Zi1Df5tZ4eoNn4X-vS-IkxyWhYgRFJNR5UJfhiCdT-tGNR-ZjXOrPYzqzRzcsDoGJKyX9vwm_uf5RPC5nya</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497365088</pqid></control><display><type>article</type><title>Spectral form factor for time-dependent matrix model</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Mukherjee, Arkaprava ; Hikami, Shinobu</creator><creatorcontrib>Mukherjee, Arkaprava ; Hikami, Shinobu</creatorcontrib><description>A
bstract
The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size
N
. The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of
M
1
and
M
2
. The numerical evaluation for finite
N
and analytic expression in the large
N
are compared for the spectral form factor.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2021)071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1/N Expansion ; Behavior ; Classical and Quantum Gravitation ; Elementary Particles ; Form factors ; Fourier transforms ; High energy physics ; Immersion plating ; Matrix Models ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Random Systems ; Regular Article - Theoretical Physics ; Relativity Theory ; Rounding ; Science education ; Spectra ; String Theory ; Time dependence</subject><ispartof>The journal of high energy physics, 2021-03, Vol.2021 (3), p.1-36, Article 71</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</citedby><cites>FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2497365088/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2497365088?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mukherjee, Arkaprava</creatorcontrib><creatorcontrib>Hikami, Shinobu</creatorcontrib><title>Spectral form factor for time-dependent matrix model</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size
N
. The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of
M
1
and
M
2
. The numerical evaluation for finite
N
and analytic expression in the large
N
are compared for the spectral form factor.</description><subject>1/N Expansion</subject><subject>Behavior</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Form factors</subject><subject>Fourier transforms</subject><subject>High energy physics</subject><subject>Immersion plating</subject><subject>Matrix Models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Random Systems</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Rounding</subject><subject>Science education</subject><subject>Spectra</subject><subject>String Theory</subject><subject>Time dependence</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UE1LwzAYDqLg_Dh7LXjRQ92bjzbJUcZ0k4GCeg5pmoyOtplpBvrvzayoF0_Pw8vz8fIgdIHhBgPw6cNi_gT0igDB18DxAZpgIDIXjMvDP_wYnQzDBgAXWMIEseetNTHoNnM-dJnTJvqw51lsOpvXdmv72vYx63QMzXvW-dq2Z-jI6Xaw5994il7v5i-zRb56vF_Oble5KQiPOZGVrEuJUxcRJa1MpSU3VOuaCihtTY3AQmqmAQojC04EL4jkAhwmAiSjp2g55tZeb9Q2NJ0OH8rrRn0dfFgrHWJjWqtkxVhpCXe8KpkBU5UaaALDaF04Z1PW5Zi1Df5tZ4eoNn4X-vS-IkxyWhYgRFJNR5UJfhiCdT-tGNR-ZjXOrPYzqzRzcsDoGJKyX9vwm_uf5RPC5nya</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mukherjee, Arkaprava</creator><creator>Hikami, Shinobu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210301</creationdate><title>Spectral form factor for time-dependent matrix model</title><author>Mukherjee, Arkaprava ; Hikami, Shinobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1/N Expansion</topic><topic>Behavior</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Form factors</topic><topic>Fourier transforms</topic><topic>High energy physics</topic><topic>Immersion plating</topic><topic>Matrix Models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Random Systems</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Rounding</topic><topic>Science education</topic><topic>Spectra</topic><topic>String Theory</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Arkaprava</creatorcontrib><creatorcontrib>Hikami, Shinobu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Arkaprava</au><au>Hikami, Shinobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral form factor for time-dependent matrix model</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>2021</volume><issue>3</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><artnum>71</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size
N
. The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of
M
1
and
M
2
. The numerical evaluation for finite
N
and analytic expression in the large
N
are compared for the spectral form factor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP03(2021)071</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2021-03, Vol.2021 (3), p.1-36, Article 71 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9b446e27f7b64c0cb6a030cbc43d5ffe |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | 1/N Expansion Behavior Classical and Quantum Gravitation Elementary Particles Form factors Fourier transforms High energy physics Immersion plating Matrix Models Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Random Systems Regular Article - Theoretical Physics Relativity Theory Rounding Science education Spectra String Theory Time dependence |
title | Spectral form factor for time-dependent matrix model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20form%20factor%20for%20time-dependent%20matrix%20model&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Mukherjee,%20Arkaprava&rft.date=2021-03-01&rft.volume=2021&rft.issue=3&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.artnum=71&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2021)071&rft_dat=%3Cproquest_doaj_%3E2497365088%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-29b9d6910152863bcba97c3aad3806ed3c8189a4a005c957287529780f1280943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2497365088&rft_id=info:pmid/&rfr_iscdi=true |